
Human Understanding of Controlled Natural 
Language in Simulated Tactical Environments 

Erin Zaroukian 
Human Research and Engineering Directorate 

US Army Research Laboratory 
Aberdeen Proving Ground, USA 

erin.g.zaroukian.ctr@mail.mil 

Abstract—Computational platforms with natural language 
interfaces have become commonplace, but they present 
limitations that make them less than ideal for military and other 
safety-critical environments.  Controlled Natural Languages 
(languages built from a subset of natural language, which are 
both computer- and human-readable) hold promise for Human-
Computer Collaboration via these platforms, especially when the 
human user needs to add information to a knowledgebase or 
make queries, as they provide a transparent, shared 
representation. Controlled Natural Languages, however, are 
typically not optimized for human use and understanding. This 
paper presents the development and implementation of a 
framework to test the relative ease of comprehension of different 
Controlled Natural Language statements. The experiments 
presented in this paper show an advantage for one particular 
Controlled Natural Language statement over another, but only 
when responses are made under strict time pressure. These types 
of experiments allow researchers to make recommendations on 
how to improve the use and design of a Controlled Natural 
Language for more robust comprehension, particularly in 
tactical environments.  
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I. INTRODUCTION 

Human-computer collaboration (HCC), where humans and 
computer agents work together to achieve a shared goal, has 
great potential to increase situational awareness and improve 
performance on crucial military tasks. In the Intelligence Cycle 
[1], for example, computers can aid in accessing and recording 
information, and even analyzing collected information and 
making decisions. Technology using a simple conversational 
interface between the human user and the computer agent can 
be used to aid the allocation of intelligence, surveillance, and 
reconnaissance (ISR) resources [2], as well as to aid data 
collection and build a knowledge base [3]-[4]. While users in 
these studies can enter information and queries using natural 
language, much of the collaboration takes place using a 
Controlled Natural Language (CNL), which is both human- 
and computer-readable. A CNL acts as a shared representation 
between the human user and the computer agent. This avoids 
the error-prone task of parsing NL into a computer-readable 
form, and it allows the computer to answer queries and perform 

computational reasoning over its knowledge base, responding 
with transparent rationale.  

There are clear advantages to optimizing CNLs for human 
understanding, but the empirical research required to inform 
such work is lacking. This paper takes a step toward improving 
said research. After an overview of CNL and relevant research 
to-date, this paper describes 2 experiments examining human 
comprehension of a CNL, providing direct comparisons in 
accuracy and response time among CNL statements.  

II. CONTROLLED NATURAL LANGUAGE

A CNL is “… a subset of natural language that can be 
accurately and efficiently processed by a computer, but is 
expressive enough to allow natural usage by non-specialists” 
[5]. Because a CNL provides a shared representation between 
the human user and the computer agent, both the information 
used by the system and the rationale for decision making are 
transparent to the human user, obviating black-box algorithms 
and fostering trust.  

Results from a Simple Human Experiment Regarding 
Locally Observed Collective Knowledge [3] show untrained 
users productively communicating with a computer agent via 
CNL to build a knowledge base, suggesting that CNLs work 
well as a shared representation. Little is known, however, 
about just how easily human users understand a given CNL. 

Large strides toward assessing human comprehension of 
CNLs were made by Kuhn [6]-[7], who developed a 
framework for evaluating and comparing comprehension of 
CNLs. In this framework, participants were asked to judge a 
CNL statement as true/false. The truth of the statement was 
determined relative to a provided ontograph, which is a 
graphical notation Kuhn developed for representing ground 
truth. Ontographs represent a closed world, where shown 
entities and relations are the only ones that exist (e.g., in Fig. 1 
there is no person named Paul, Bill is not an officer, and Lisa 
does not see Tom). In one study in Kuhn's framework [6], 
participants showed overall high accuracy (~85% correct) in 
their responses to CNL statements. Another study [6] used a 
similar true/false task to compare participants' comprehension 
of a CNL to their comprehension of a simplified ontology, and 
participants in this study showed higher accuracy with the CNL 
statements.  
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While previous studies provide a starting point, they 
examine only accuracy, not speed, of comprehension. Speed 
indicates ease of comprehension, with faster response times 
indicating quicker and less effortful processing for 
comprehension. This is important in cases where participants 
may be performing with high accuracy across items because 
the response times for different items may vary systematically, 
indicating that the items are not all equal in terms of ease of 
comprehension. Additionally, previous studies have not 
attempted to inform the design or use of CNL for improved 
human comprehension.  

While CNLs have great potential in HCC, behavioral 
research measuring speed and accuracy is required. Such 
research will help determine how efficient CNLs are to human 
users, and will help develop principles for CNL design and use. 
To this end, the following experiments develop a framework, 
drawing on Kuhn’s ontograph approach, for testing 
paraphrases within ITA Controlled English (CE) [9]. CE is a 
CNL developed as part of the International Technology 
Alliance and used in [2]-[4]. In CE, it is simple to define 
entities and rules, allowing for many potential paraphrases that 
express the same information. For example, if the domain 
model contains the relation “sees” such that a user can state 
“the person John sees the person Tom,” the user can add “is 
seen by” to the model in order to convey the same information 
as, “the person Tom is seen by the person John.” In the 
following experiment, 3 paraphrases were tested to determine 
if certain phrasing was more quickly and accurately 
comprehended within the given context.  

III. EXPERIMENT 11 

Experiment 1 presents an initial study using a framework 
similar to Kuhn’s, where participants judged a statement as 
true/false relative to a provided diagram. Unlike Kuhn’s 
studies, however, this experiment directly compared different 
ways of expressing the same information within the same 
CNL, and it measures both speed and accuracy as indicators of 

                                                           
1 This work was presented before data collection was complete at the Annual 
Fall Meeting of the International Technology Alliance in College Park, MD 
[10]. 

comprehension. The aim is to use participants’ responses to 
these different paraphrases to determine whether certain 
expressions are more quickly or accurately understood and 
should be recommended for use above others. In this 
experiment, the comparison is among 3 ways of asserting that 2 
entities are unique: roughly, “X is not Y”, “X cannot be Y”, 
and “X is different to Y”.  

A. Participants 

Seventy-five participants were recruited through Amazon 
Mechanical Turk and were paid $0.75 for their participation. 
Mechanical Turk directed participants to Ibex Farm [11]-[12], 
which hosted the experiment. A demographic survey was given 
before the experiment began, showing that participants were 
between the ages of 21-64, 29 were female, 65 were native 
English speakers, and they had varying experience with 
logic/programming: No knowledge, n=33; A Little Knowledge, 
n=18; Some Knowledge, n=17; A Lot of Knowledge, n=3;  and 
Expert knowledge, n = 4.   

B. Materials and procedures 

After the survey, participants were presented with a rule 
written in CE paired with a diagram, and for each pair they 
were asked to respond (Yes/No) to the question “Is the diagram 
consistent with the rule?” An example is shown in Fig. 2. 
Participants worked through 7 labeled training items, followed 
by 24 test items. 

a) Diagrams 
The diagrams in this study were modeled after Kuhn’s 

ontographs and represent closed worlds. All diagrams 
contained 3 people (John, Mary, Peter), 3 books (War and 
Peace, Middlemarch, Moby-Dick), and reading relations 
represented by arrows. Four diagrams with relatively simple 
relations were used in practice, and 4 diagrams with more 
complex relations were used in test. 

b) Rules 
Uniqueness, the contrast of interest in this experiment, was 

expressed in 3 ways, exemplified below: 

“the person John is not the person Tom”  

 Fig. 2. Example test item.

 

Fig. 1. Example of an ontograph from [6]. 



“the person John cannot be the person Tom” 

“there is a person named John that is different to the person 
Tom” 

All rules were of the form “if (STATEMENT) and 
(STATEMENT) then (STATEMENT)”. Some of the 
STATEMENTs were like the examples above, but contained 
variables (such as P1, P2) instead of specific names (see 
Examples 1-4, below).  

To create variety in the items and discourage participants 
from developing superficial response strategies, rules were 
varied in a number of ways. Examples of the 4 types of 
uniqueness items are provided in (1-4) below using  
“is not” (for clarity, natural language translations are given 
below each example here, but these were not provided to 
participants).  

1. if (the person P1 reads the book B1) and (the book B2 is 
not the book B1) then (the person P1 does not read the 
book B2).  

‘If a person reads a book, that person does not read any 
other book.’ 

2. if (the person P1 reads the book B1) and (the book B2 is 
not the book B1) then (the person P1 reads the book B2).  

‘If a person reads a book, that person reads every other 
book too.’ 

3. if (the person P1 reads the book B1) and (the person P2 is 
not the person P1) then (the person P2 does not read the 
book B1).  

‘If a person reads a book, no other person reads that book.’ 

4. if (the person P1 reads the book B1) and (the person P2 is 
not the person P1) then (the person P2 reads the book B1).  

‘If a person reads a book, every other person reads that 
book too.’ 

Participants also saw 2 types of fillers, shown in (5-6). 

5. if (the person P1 reads the book B1) and (the person P2 
reads the book B2) then (the book B2 is the book B1).  

‘If someone reads a book and someone (possibly the same 
person) reads a book, then those books are the same book.’ 

6. if (the person P1 reads the book B1) and (the person P2 is 
the person P1) then (the person P2 reads the book B2).  

‘If a person reads a book, and there is another person who 
is actually the same person, then that person reads a book 
(possibly the same as the first book).’ 

Furthermore, the order of the 2 statements in the “if”-clause 
were shown in the order above, as well as reversed. 

c) Procedure 
Each participant began with a survey, then 7 practice items. 

These practice items contained simplified diagrams and rules 
intended to introduce the statement–diagram paradigm, and 
teach them how to read CE rules and interpret CE variables. 
The practice items did not contain any uniqueness expressions. 

Participants were given step-by-step instructions on how to 
solve 4 of the practice items. Upon responding to any practice 
item, participants were told whether their response was correct 
or incorrect and were given an explanation of how to solve that 
item. 

After completing the practice items, participants saw 24 test 
items, each separated by a rest screen reminding them to 
respond as quickly and as accurately as possible. Participants 
were not told whether their answer was correct. Sixteen of 
these 24 items contained the contrast of interest, while 8 were 
fillers, which were not included in analyses. Each participant 
saw each of the 4 main rule types (1-4) with each of the 4 
diagrams: 2 that made it true, and 2 that made it false. A Latin 
square design determined which uniqueness expression was 
used in each rule, and the number of regular/reversed 
antecedents was balanced within subjects. 

C. Results 

Mean accuracy was 0.747 (SE=0.031) with mean reaction 
time, 12.802s (SE=1.309s), represented for individuals in Fig. 
3. The contrast of interest between the uniqueness expressions 
is shown in Fig. 4. A generalized linear mixed model2 [14]-
[16] with worker as random effect and rule form as  fixed 
effect3 revealed no effect of uniqueness expression on accuracy 
( 2(2)=0.727, p=0.695) or response time  ( 2(2)=0.848, 
p=0.654).  

D. Discussion 

High mean accuracy suggests that this experimental 
framework allows participants to demonstrate comprehension 
of CE. While a number of participants’ accuracy is at ceiling, a 
similar number are at chance (0.5), indicating that, despite high 
overall accuracy, some participants do not understand the task 
fully. Absolute accuracy, however, is not of primary interest 
here; relative accuracy among different uniqueness expressions 

                                                           
2 Generalized mixed models are a generalization of linear regression that can 
fit non-normal dependent measures by including both fixed and random 

effects [13]. 
3 While the addition of rule form as fixed effect did increase the plausibility 
of the model, rule form was nonetheless part of the experimental manipulation 
and is included in the models reported [17]. 

 
Fig. 3. Mean accuracy and response time per worker in Experiment 1, 

with overall means as dashed lines. 



is of much greater interest. Since why certain participants 
performed at chance cannot be determined (e.g., difficulty 
understanding the diagrams, understanding the rules, using 
their own computer), differences in (lack of) comprehension of 
uniqueness expressions are difficult to interpret. Thus, 
Experiment 2 focused on data from participants who performed 
above chance. 

Response times provide 2 insights. First, a number of 
participants had very short response times, which tended to 
coincide with low accuracy, suggesting that these participants 
did not carefully read the CE rules and/or inspect the diagram.  
Thus, in Experiment 2, only data from participants with above 
chance accuracy—i.e. who likely understood the task—are 
analyzed.  Second, inspection of individual trials reveals a 
number of long response times, well beyond 2 standard 
deviations above the mean (26.75s). Because this experiment 
showed high overall accuracy, with many participants at 
ceiling, Experiment 2 introduced a time limit, which may lower 
accuracy and may be crucial for identifying performance 
differences among the uniqueness expressions.   

IV. EXPERIMENT 2 

Experiment 2 was identical to Experiment 1, with the 
addition of a time constraint. It was hypothesized that a time 
constraint would lower accuracy and reveal differences in 
performance within the contrast of interest—uniqueness.  

A. Participants 

A time limit is likely to lower performance, and it was 
unclear how many participants would be required to retain 
adequate power after removing those with mean accuracy at 
0.5 and below. To inform this, an initial 77 participants4 were 
recruited via Mechanical Turk to pilot Experiment 2. These 
participants showed a mean accuracy of 0.544 (SE=0.020) and 
a mean response time of 6.189 (SE=.0411). Of these 
participants, 37 had a mean accuracy above 0.5.  

Informed by this preliminary study, an additional 199 
participants were recruited through Amazon Mechanical Turk 

                                                           
4 While 75 participants were targeted for this preliminary study and 200 for 
Experiment 2, idiosyncrasies in the communication between Mechanical Turk 
and the server hosting the experiment led to slight discrepancies. 

for Experiment 2. The demographic survey showed that 
participants were between the ages of 18-74 years, 105 were 
female, 168 were native English speakers, and they again had 
varying experience with logic/programming: No knowledge, 
n=92; A Little Knowledge, n=32; Some Knowledge, n=49; A 
Lot of Knowledge, n=18;  and Expert knowledge, n = 8.  

B. Materials and procedure 

Materials and procedure in Experiment 2 were the same as 
Experiment 1, but with an added time limit. Participants were 
told that if they did not complete an item within 15s, the task 
would automatically progress to the next item. They were 
reminded of this time limit in the rest screen between items. If 
participants did not respond within the time limit, the trial was 
considered incorrect. 

C. Results 

For the 132 participants that scored above chance (0.5), mean 
accuracy was 0.713 (SE=0.011) and mean response time 
8.106s (SE=0.264s). Data for all 199 participants is shown in 
Fig. 5. The contrast of interest between uniqueness expressions 
is shown in Fig 6. A generalized linear mixed model with 
worker as random effect and rule form as fixed effect5 revealed 
a significant effect of uniqueness expression on accuracy 
( 2(2) =6.485, p=0.039), but no significant effect on response 
time  ( 2(2)=3.695, p=0.157). This gives an evidence ratio of 
3.36. Between-group comparisons based on least squares 
means show that only “cannot be” and  “is not” are 
significantly different, p=0.032 [18].  

D. Discussion 

While Experiment 1 failed to show differences in ease of 
comprehension among the 3 paraphrases tested, it revealed 
wide ranges both in response times and in accuracy across 
participants. Long response times might mask difference in 
performance, and chance performance suggests failure to 
understand the task.  Experiment 2 addressed these issues by 
introducing a time limit and by restricting analysis to those 

                                                           
5 Again, while not increasing model plausibility, rule form is included. 

 

Fig. 5. Mean accuracy and response time per participant in Experiment 
2, with overall means as dashed lines. 

 

Fig. 4. Mean accuracy and response time by uniqueness expression in 
Experiment 1, with SE. 



who performed above chance (i.e., likely understood the task). 
This revealed a small difference in participants’ accuracy on 
the different uniqueness expressions, where responses to “is 
not” were more accurate than responses to “cannot be”.  

On one hand, this result is unsurprising, as the verb 
“cannot” is often used in statements made via inference—e.g., 
“John isn’t home (I know this for a fact)” vs. “John can’t be 
home (because I just saw him at the store)”. If participants are 
trying to accommodate this interpretation by inventing a 
context that fits with an inferential reading, this could lead to 
slower response times or lower accuracy. Participants may 
even find such rules uninterpretable in this context. On the 
other hand, these results are surprising. The word “not” is 
crucial but easy to miss, especially given that the experiment 
contained filler items with bare “is” (not with bare “can”). 
Negation is also easy to misremember [19], but no advantage 
was found for the more salient, positive “is different to”. 

V. CONCLUSION 

In tactical environments, where decision making is done 
with limited time resources, CNLs hold great potential. They 
serve as a shared representation between human and computer 
agent, sidestepping the unreliable automated step of translating 
NL to a computer-readable format while providing support for 
improved situational awareness. Further, CNLs can be directly 
shaped to the user’s needs and limitations. The experiments 
presented in this paper show that, in a situation with strict time 
constraints, the precise phrasing of a statement can make a 
significant difference in the accuracy of the human user’s 
comprehension of that statement. This was seen in Experiment 
2, which introduced a time constraint and showed differences 
in accuracy where “is not” produced more accurate responses 
than “cannot be”. This moves a step toward making evidence-
based recommendations on how CNLs should be designed and 
used in these contexts.  
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