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Abstract. This study expands on previous surveys of computational
theory of mind (ToM) focusing on four key areas. Data: We attempt to
characterize data needed for this research and propose creating proce-
durally generated, multi-modal synthetic data for training and testing
ToM systems, addressing the lack of open-source data of agent behav-
iors in closed environments. Metrics: We explore ToM evaluation beyond
the Sally-Anne Test, considering child development stages and natu-
ral language understanding as potential measures. Model: We investi-
gate building on recent ToM models, exploring open-ended learning in
reinforcement learning, and applying neuroscientific insights to model
architecture. We also examine ToM applications in everyday technolo-
gies, leveraging state-of-the-art transformer technologies and multimodal
datasets. Theoretical Formalization: We aim to bridge cognitive science
and psychology concepts with mathematical approaches to facilitate al-
gorithm development in ToM.
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1 Introduction

Computational theory of mind (ToM) is an area of artificial intelligence (AI)
aiming to formalize and create algorithms for systems capable of inferring hid-
den internal states (intentions), and predict future behaviors and actions, of the
agents it observes and interacts with. ToM has its foundations in cognitive sci-
ence and psychology (see Wimmer and Perner [96], Premack and Woodruff [68]),
but there are notable efforts to bring about its computational implementation,
as we shall see. Korkmuz [43] mentions “ToM is a composite function, which
involves memory, joint attention, complex perceptual recognition (such as face
and gaze processing), language, executive functions (such as tracking of inten-
tions and goals and moral reasoning), emotion processing-recognition, empathy,
and imitation.”

For many, such a capability is considered the holy grail of AI research having
broad-reaching consequences in fields like social assistance (see Patricio [62],

DRAFT



2 P. Kumar, E. Zaroukian, D. Summers-Stay, A. Raglin

Williams [95]), autonomous navigation Liu [51], video gaming in the creation of
advanced characters to challenge players. Pijl [67] provides examples of behaviors
requiring ToM which we present here along with some related references:

1. Intentionally communicating with others: Active communication to alter the
listener’s knowledge (see Baron-Cohen [7] within Corballis [13]. )

2. Repairing failed communication: Recognizing action or dialogue may not
make sense without context (see Bosco [9], Sidera [80]).

3. Teaching others: A teacher must recognize the understanding of their student
to provide extra instruction as necessary (see Wellman [92], Knutsen [42]).

4. Intentionally persuading others: Altering another’s beliefs.
5. Intentionally deceiving others: Specifically altering another’s beliefs into a

state of fallacy. (see Sarkadi [73], Alon [2]).
6. Building shared plans and goals: Understanding of another’s perspective,

knowledge and capabilities (see De Weerd [14]).
7. Intentionally sharing a focus or topic of attention: Understanding the per-

spective of another on a shared target (see Krych-Appelbaum [45], Buehler
[11]).

8. Pretending: Not necessarily deception; in some cases all participants recog-
nize the act (see Lillard [49]). Additionally, pretending requires a higher-
order ToM to gauge another’s beliefs about the pretender.

Contemporary computational ToM research has achieved notable results for
single-agents in static environments (Rabinowitz [69], Raileanu [70], Nguyen
[59]). Further the recent successes of transformer-based Large Language Models
(LLMs) have prompted research into whether such models have various cognitive
capabilities, including ToM. Aru [4] point out machines exploit “shortcuts”, rec-
ognizing particular statistical features of the data (e.g. geometric arrangements)
rather than inferring directly on an agent’s “mindset.” (This phenomena is seen
earlier by Niven [60] in the context of natural language processing.) Kosinski
[44] argues of the emergence of ToM in LLMs, and still others (Gandhi [22],
Street [82], McDuff [55], Kennedy [39] ) continue to argue and provide different
perspective on the capabilities of these large generative models.

We address research in computational ToM by dividing the problem into four
directions, as listed below:

– Data: Where we address the characteristics of data that have been used to
date and how using multimodal data is essential for progress in the field.

– Metrics: As with measuring the visual reasoning capabilities of a computer-
vision model or the “human-ness” of a natural language model, it is crucial
to understand ToM usage to characterize the dimensions of inference a model
can operate in.

– Models: Building on recent model studies by examining concepts in open-
ended learning, neuroscience, and causal reasoning.

– Theory: Studies in cognitive development and psychology are obviously foun-
dational here, but we hope to discuss a few mathematical ideas to facilitate
algorithm development in the field.
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As we consider these directions, we also consider viewing ToM from the lens
of its conceptual and operational definitions which Baumeister [8] highlights:
the conceptual definition includes the general abilities of inferring on hidden
mental states like desires, goals or emotions, while the operational definition
captures ToM “use” through characteristic performance on various tasks. Aru
[4] points out that ToM cannot be wholistically captured through performance
of individual tasks for it is the ability to perform AND adapt to a wide array
of tasks and situations which enables the “true” use of ToM. For example, they
advocate for open-ended learning (OEL) (see Hughes [33], Sigaud [81], DeepMind
OEL Team [85]) to enable an agent to explore its environment and adapt to the
various tasks and interactions it is presented with. This, of course, presents long-
term consequences, in that given finite computational resources, developing and
testing the full gamut of ToM characteristics and usage may not be viable, nor
beneficial. Nonetheless, we aim to provide a foundation for a more dedicated and
rigorous study of its application and usage.

2 Data

Widely available open-source data illustrating agent intention via behaviors in
closed environments are in development. One source is Liu (2020) [51], where the
goal was for an autonomous system to predict whether pedestrians were intend-
ing to cross. The study does not mention ToM explicitly, but their computer-
vision-based model is an example for data fitting the operational definition of
ToM. The dataset consists of “900 hours of driving scene videos of front, right,
and left cameras, while the vehicle was driving in dense areas of five cities in
the United States. The videos were annotated at 2fps with pedestrian bounding
boxes and labels of crossing/not-crossing the street.”

Gameplay datasets involving humans provide the most viable testing ground
for ToM algorithms, as there is, at least assumed, intention ingrained in the
play. The overall goal of any game is to win, which is broken down to the game
objective: earn the most points, acquire the most territory, complete the most
subtasks, etc. The game objectives inspire strategies; for example, focus on win-
ning in tasks A,C,D, as B and E are difficult. Strategies are specialized into
narrowed/directed intention; for example, distract opponent in a certain area
on the board. Gameplay datasets involving artificial autonomous agents may be
ingrained with ”ToM-like structures” that went into its training. The following
are examples for agent game play datasets and frameworks for generating game
play, many of which follow from Tan [84]: Chess, Mitchell J [34]; Lichess Open
Database [1]; Atari 2600, Kurin [47]; Super Mario Bros, Kauten [38]; Mincecraft,
Guss [25]; StarCraft II, Vinyals [89].

We hypothesize that multiple modalities will be key in facilitating a model’s
understanding of the link between thought and physical action; linking what
is said by, or described about, the agent, and what observable actions are per-
formed. We use a simple thought-experiment; consider the following phrase: ”I
love it here!” One reader may not interpret the meaning behind this phrase
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the same as another. Now suppose this was audibly stated by a human being.
Audio presents pitch and tone data allowing us to infer who the speaker is. If
it was from a child in a toy store, then one may infer genuine excitement, but
if it were a physical laborer after they completed an arduous task, then their
excitement could be questioned. The addition of another modality, audio, in
form of vocal inflection, would aid in inferencing in this case. Further, the facts
that the child is in a toy store or the laborer indeed completed an arduous task
would not be apparent from either text or the audio modalities. Visual modality
of each character in their respective environments, displaying body-language,
further enhances inferencing. ToM traditionally deals with these three modali-
ties (natural language, visual and audio); we have not come across any studies
looking at other modalities (e.g. tactile) and even sub-modalities (e.g. infrared
images, LiDAR point clouds) are limited. It is highly unlikely, if not impossible,
for humans to perceive infrared without specific tools, so inferring on it makes
no sense. What really happens is that information from these invisible regimes
are transformed to be consumable by humans. For example, LiDAR data is pro-
cessed until a map of the environment is constructed, or gravitational waves alter
behavior of light which we can detect to process into signatures characterizing
their origins. (A “competent” socially-intelligent agent would have the ability
to recognize that their human partner would need these transformations to fur-
ther infer on the traditionally non-interpretable information.) Di Vincenzo’s dis-
sertation [17] provides further insight into the multimodal nature of theory of
mind, in particular as it relates to non-linguistic animals. Jin [36] presents one
of the first multimodal ToM benchmarks, Multimodal Theory of Mind Question
Answering (MMToM-QA) in the form of text descriptions along with series of
images, as well as a novel architecture Bayesian Inverse Planning Accelerated by
Language Models (BIP-ALM) to test this benchmark. Zhu [99] uses Simulation
ToM to model beliefs during development of a common-ground between agents
cooperating through multimodal interactions. Miniotaite [56] examines tabletop
games Hanabi, Pandemic Hot Zone - Europe, Poker, and a custom game Peeker-
Picker as opportunities for generating multimodal social data. Shi [77] expands
on previous multimodal applications of ToM by incorporating multiple agents
providing a pathway for systems tracking multiple individual behaviors, as well
group dynamics.

In general, intention must be imbued within a dataset for a model to even
consider it as a subject of inference. In addition to curating human gameplay,
we advocate for generating one’s own agent behavior datasets through resources
like Farama Foundation [12], [86], NetLogo [94], or any game engine allowing
for reinforcement learning (RL) plugins. The benefits of using agents trained via
RL are that the algorithm’s parameters and learned policies are quantified and
available as ground-truth for comparisons with a ToM model’s inferences, which
will further allow for creation of elusive metrics.
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3 Metrics

How do we “measure” ToM? A classical evaluation of ToM capabilities is the
Sally-Anne Test, which tests for explicit knowledge of a false belief. Some argue,
however, that a more implicit form of ToM may be present in humans, other
animals, or perhaps even computational models that lack the language, executive
function, and neural development to succeed at an explicit Sally-Anne Test; see
Rakoczy [71]. We hypothesize as Aru [4] does, that ToM is a process not tied
to performing any one task is particular; it also requires adaptability in learning
and understanding.

Attempting the ascertain the ToM capabilities of LLMs is quite a popular
subject. Summers-Stay [83] implemented tests from Kaland [37] on GPT-3 and
found GPT-3 was able to pass all of these tests, but it was very inconsistent
in its abilities to answer questions generally. Current top-end LLMs have no
problem with these kinds of tasks if prompted appropriately. Xu [97] address the
lack of personality traits, preferences and motivations in human ToM tests used
for LLMs by introducing OpenToM, a human-in-the-loop generated benchmark
providing for these shortcomings while also assessing the model’s capacity for
understanding both physical and psychological worlds. They further attempt
to mitigate spurious correlations, a challenge raised in Aru [4], by manually
revising narratives with “substantial lexical overlap with questions or those that
provide shortcuts for answering them.” Further they employ concepts of causal
reasoning based on Judea Pearl’s works (see [64], [65], [66]) to highlight spurious
cues. Other recent examples of LLM ToM benchmarks include FANToM from
Kim [41], HI-TOM from He [27], ToMATO from Shinoda [78], EgoSocialArena
from Hou [31] and Le [48].

Another recent attempt at measuring ToM in computational systems is the
AGENT benchmark from Shu [79] which creates a dataset consisting of videos of
agents performing a series of four core psychological reasoning tasks which they
use to compare the performances of two ToM models, one based on Bayesian
Inferencing Planning (BIPACK) and another based on a neural network archi-
tecture, ToMnet-G. They go on to discuss, ”In addition to this minimal set of
concepts, a model may also need to understand other concepts to pass a full
battery of core intuitive psychology, including perceptual access and intuitive
physics. Although this minimal set does not include other concepts of intuitive
psychology such as false belief, it is considered part of ‘core psychology’ in young
children who cannot yet pass false belief tasks, and forms the building blocks for
later concepts like false belief.”

Hagendorff [26] offers prescriptive insight introducing methods for testing
and interpreting behaviors of LLMs. Sclar (2024) [76] “introduce ExploreToM,
an A*-powered algorithm [leveraging LLMs like Llama-3.1-70B, GPT-4o and
Mixtral-8x7B-Instruct] for generating reliable, diverse, and challenging theory
of mind data that can be effectively employed for testing or fine-tuning LLMs.”
Sclar (2022) [75] provides a situated, multi-agent environment, SymmToM, in-
corporating ideas from reinforcement learning to test their capabilities.
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We propose considering research in child development as a framework for
developing a “battery” of tests for measuring ToM capabilities. Specifically, the
stages, as given in Wellman and Liu [93] and summarized in Baumeister [8]:

1. Diverse Desires: Recognizing two agents have different DESIRES about the
same object. (e.g. Abby wants the coffee, but Mike does not.)

2. Diverse Beliefs: Recognizing two agents having different BELIEFS about the
same object. (e.g. Abby thinks the coffee is bitter, Mike thinks its sweet.)

3. Knowledge Access: Ability to judge knowledge of another agent not sharing
the participants knowledge (e.g. Mike realizes Abby knows how to play a
certain video game that he does not.)

4. Contents False Belief: Recognizing an individual’s false beliefs about a con-
tainer’s contents. (e.g. Abby told Mike she thinks there is a pizza in his lunch
bag, when he actually packed a sandwich.)

5. Explicit False Belief: Predicting subsequent behavior of another individual
with a false-belief. (e.g. Abby asks Mike to trade his ”pizza” for her sand-
wich.)

6. Belief Emotion: Judging how another individual feels based on a false belief.
(e.g. Abby is excited about the ”pizza” she’s about to get. )

7. Real-Apparent Emotion: Recognizing an individual may feel a certain way,
but display different emotions. (e.g. Abby looked sad when she actually
traded a sandwich for another sandwich, instead of a pizza, but she was
actually happy because her second sandwich was not dry like the first.)

Baumeister [8] goes on to comment about “higher-order reasoning”, as well.
That is, understanding an agent may have a false-belief about another agent’s
beliefs. Recursive thinking (Raileanu [70], Devaine [16]) is an example of this.

While all of these can be tested through natural language modalities, in con-
nection to our goal of promoting multimodal explorations of ToM, we propose
generalizing these to, say, complimentary visual modalities, as well. An example
for the Diverse Desires (and possibly even Diverse Beliefs) could be illustrated
using a (series of) videos depicting two agents and an object, where one agent
proceeds towards the object and another retreats from it. Knowledge-access, as
another example, can be illustrated through a video depicting an agent methodi-
cally completing a task unknown to the model. Strict audio modality applications
of these tasks can be accomplished, for example, through verbal story-telling or
engagement in dialogue. Again, we emphasize the use of multiple modalities as
a mechanism for uncovering intention. An agent seemingly behaving randomly
to the naked eye, using RGB data, may actually act based on the interpretation
of say LiDAR point-cloud data illustrating the presence of objects of interest in
the environment.

One important issue is that most tests of theory of mind were designed for
humans. If a human can pass such a test, we can conclude that they have other
theory-of-mind abilities as well. However, it is less clear what the ability to
pass such a test implies for an LLM. Even if it can predict what someone else
will think when taking such a test, will it use this ability when, for example,
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teaching a new concept? Does the LLM’s attention (or probability weighting;
Kosinski [44]) match the patterns of attention/eye gaze expected from a human
in an implicit test of ToM, such as an anticipatory looking test of a violation of
expectation test?

4 Models

How do we build on recent studies developing ToM models? Can neuroscientific
research point us towards properly designing model architectures, as in the case
of the development of convolutional neural networks? How do we characterize
problems from the perspective of fundamental machine learning? How does work
in causal reasoning relate to ToM?

Nebreda [57] categorizes ToM models into three particular types: Cognitive,
black-box and bio-inspired. Bio-inspired models constitute those based on neu-
roscientific study; Nebreda [57] references Ask [5] among others which discuss
the difficulties of computationally modeling biology and advocates for multi-level
modeling as an approach as opposed to a single model capturing all neurobio-
logical phenomena. In terms of pure biology and neuroscience, Saxe (2006) [74]
compiles neuroscientific ToM research through 2006 which mentions the recruit-
ment of the right temporo-parietal junction (RTPJ) in reasoning about others
mental states, in particular, “the RTPJ does appear to reflect the functioning
of a specialized, domain-specific mechanism for reasoning about beliefs.” Wade
[90] tests hypotheses of the interplay between ToM and executive function (EF)
from the perspective of neurological development, cites “the importance of the
superior temporal regions” based on Apperly [3].

Gallese [21] discusses a class of neurons, mirror neurons, discovered at the
time, and posits their use in the “action-execution/observation matching system”
used for “mind-reading.” Keysers [40] proposes Hebbian learning to explain the
existence of mirror neurons citing Hebb [28], “‘When an axon of cell A is near
enough to excite cell B or repeatedly or consistently takes part in firing it, some
growth or metabolic change takes place [. . . ] such that A’s efficiency, as one of
the cells firing B, is increased’. Put in simpler words: ‘neurons that fire together
wire together’.” More recently Mohammadi [24] assembles these ideas into a
machine learning model for mirror neurons and implements a ToM experiment
using the River Raid Atari game environment by OpenAI [10].

Computational ToM problems can be posed from the lens of (un-/semi-
)supervised and reinforcement learning. With supervised learning, the goal of
a ToM model is to characterize, and predict the behaviors of, agents based on
ground-truth; such an approach is implemented in Rabinowitz [69], for example.
Supervised learning in this manner can limit a model’s generalizability as it be-
comes a task of exhaustively expressing various behaviors and actions. Hewson
[29] uses a self-supervised approach with ToM concepts tying “extrinsic moti-
vations, such as [reinforcement learning from human feedback]” with “intrinsic
motivations” that achieve its own goals, in order to facilitate model understand-
ing of human desires.
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Unsupervised learning for ToM systems could provide insight into cognitive
behaviors/structures not characterized before. A simple example consists of sev-
eral agents with uncharacterized traits; it would be up to the model to group
their behaviors accordingly and up to the researcher to define these grouping.
We discussed RL before from the perspective of generative agent behavior data;
in terms of a ToM model it allows for illustration of the operational definition
of ToM, but defining proper reward functions encouraging the model to reason
on another agent’s hidden states is difficult (Aru [4]), but has been attempted
(Oguntola [61]).

Earlier, we noted ideas of causal reasoning being used to infer on spurious
cues in the works of Xu [97]; see works of Fears [20], Rawal [72] for other ex-
amples in the use of causality. Causal models form another approach to ToM
representation. Ho [30] describes ToM as a causal model, especially when viewed
from the perspective of planning. Lombard [52] argues ToM also aims to un-
derstand that, “actions based on such understanding [of emotions, attention,
desires, beliefs] have causes and effects” and goes on to analyze ToM by order
as described in Dennett [15]:

1. Zero-order ToM ascribes no mentality to an individual, but assumes that
behavior of the individual is governed by instincts, reflexes, or conditioning.

2. First-order ToM attributes emotions, attention, desires, intentions, or beliefs
to the individual and that some forms of behaviors are governed by these
entities. This level, however, presumes no understanding of the minds of
other individuals.

3. Second-order ToM requires an individual to attribute a ToM to other indi-
viduals and to use this in their understanding of the behavior of others.

4. Third-order ToM requires an individual A to attribute to a second individual
B an understanding of the ToM of A.

5. Higher orders of ToM require an individual to represent at least two mental
states, their own and that of someone else.

Delineating and characterizing model order provides insight into its capabili-
ties. In our earlier survey (Kumar [46]) we provide for another delineation based
on model perspective: third-person versus first-person.

As mentioned previously, LLMs serve as viable experimental subjects in
themselves for testing ToM abilities due to the strong link between language
and ToM (see ) even if the debates as to their actual capabilities have not been
settled (see Kosinski [44], Ullman [87], Zhou [98], Hou [32]) The rapid growth
of these technologies provides hope in the development of ToM faculties that in-
corporate the above ideas, and each new generation lends itself to more rigorous
scrutiny.

5 Theory

While cognitive science and psychology serve as the theoretical foundation for
ToM research, we examine mathematical perspectives to facilitate algorithm
development.
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Baker [6] describes humans’ understanding of the internal states of others
based on observable actions using the framework of Bayesian Inverse Planning
(BIP), which serves as a foundation for a number of contemporary studies in com-
putational ToM. The basis of the framework lies within modeling agent behav-
iors and the associated uncertainties within closed environments using Markov
Decision Processes (MDPs).

MDPs are defined (see Uther [88]) as a tuple {S,A, p, r}, where

– S is the state space: Space of possible configurations of the environments
containing the agent;

– A is the action space: Space of possible actions of the agent within the
environment;

– p is the transition function: Function representing the probability of a s′ ∈ S
given another state s ∈ S and action a ∈ A;

– r is the reward function: Function representing the reward (punishment) the
agent received for taking an action a (∈ A) in state s (∈ S).

MDPs can be generalized to Partially Observable MDPs, POMDPs, (Uther
[88]) if we assume the agent cannot have complete knowledge of the environment,
which is consistent with reality; such a model has been used in, for example, Ra-
binowitz [69] to model agent behavior in a closed environment which is used
to train a neural network to characterize and predict future behaviors.) Baker
[6] discusses the BIP model in terms of Environment (Env), encoded as S in
an MDP, Action, encoded as A, and Goal (encoded in r). Further, they for-
malize probabilistic planning, then, as P (Action|Goal,Env) where P denotes a
probability, from which BIP is given by Bayes’ Rule:

P (Goal|Action,Env) ∝ P (Action|Goal,Env)P (Goal|Env)

Jara-Ettinger [35] describes ToM in terms of inverse reinforcement learning
(IRL), which from Ng [58] is formalized as determining a reward function based
on observed behaviors, sensory and environmental inputs; Ng also develops the
IRL problem in terms of a MDPs.

(PO)MDPs serve as a veritable experimental ground for testing these frame-
works. An interesting extension would be including a notion of “indirect infor-
mation”; that is, information provided to the agent that alters their behavior but
is not perceivable through direct observation. For example, observing an agent
change course not because of any obstacle on their path or the sudden appear-
ance of a new goal item within the environment, but due to information they may
have received externally. The cause of the change could be “invisible” based on
the observer’s perceptive capabilities (e.g. an agent acting on LiDAR data while
their observer only has access to RGB). The situation where an observer cannot
access secret communications between, say, a subject agent and a third-party
is subsumed into that where the observer does not have the capability for such
access. The goals of this problem then become (1) recognizing “indirect infor-
mation” as a, now, measurable cause and (2) identifying the actual source of the
“indirect information”. In other words, ascertaining an explanation provided the
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given observations; this is the basis for abductive reasoning (see Douven [19]).
We can think of ToM as a special application of abductive reasoning; using
what we can perceive about an agent, how do we explain their behavior? Gor-
don [23] provides a computational approach to abductive reasoning which uses
a knowledge-base of pre-determined (joint/conditional) probabilities of various
observations provided certain hypotheses. Using this knowledge, their Etcetera-
Abduction system performs a combinatorial search of potential explanations for
a given set of observations. That is, it essentially solves

argmaxH∈Heval(H) = P (H|O) =
P (O|H)P (H)

P (O)
,

where H gives the space of potential hypotheses, eval is a function used to
evaluate candidate hypotheses for minimizing their cost as related to explaining
observation, O. The trickiest task in using this model is formalizing an extensive
knowledge-base and quantifying the associated event probabilities. The problem
becomes more intractable as we consider deeper causal chains possible for the
agent and longer observer context windows (i.e. how far back in its memories and
experiences does it have go to interpret a set of events?) However, such approach
allows for explanations involving potential unknown actors and causes, mostly
as lower probability explanations, for given situations.

Another approach for computational ToM individualizes the model to the
type of observer. Patricio [62] uses the idea of fuzzy cognitive maps (FCMs). To
summarize the mathematical framework as the authors present, the evolution of
a system is provided by variables called concepts; Ci being the i-th concept (e.g.
emotion). A representation Ai of the i-th concept provides a possible instantia-
tion (e.g. happiness). C is the set of all concepts, A is the set of all instantiations.
Concepts can be linked to other concepts and the weight of the links determines
their influence; such weights can vary as functions of concepts and their repre-
sentations. The set of all simple links is L; those connecting two concepts not
connected to any third. L̄ is the set of all complex links: simple links and that of a
third concept affecting it. Patricio delineates the dynamic equation for updating
concepts over time:

Cj(k + 1) = h

(∑
∀i|(i,j)∈L f(Ci(k), Cj(k))Ci(k) +∑

∀i;∃l|(i,j,l)∈L̄ g(Cl(k), Ci(k), Cj(k))Ci(k)+αjCj(k)

)
,

where h is a threshold function constraining Cj , f : A2 −→ [−1, 1], g : A3 −→
[−1, 1], αj correspond to the influence Cj , realized at the current timestep, has
on the same concept during the next step. Further, the authors personalized the
weights of the links between concepts using a loss optimization strategy involving
quantifications of the individual’s linguistic responses to a survey about their
“preferences, rationally perceived knowledge, and general world knowledge.”

One more example of individualization, albeit in a more group-like manner,
is Diaconescu [18] applying a Hierarchical Gaussian Filter (HGF) (see Mathys
(2011) [53] and Mathys (2014) [54]) for tracking shifting intentions and the asso-
ciated volatilities. They describe that “an agent uses a sequence of sensory inputs
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to make inferences on a hierarchy of hidden states, x
(k)
1 , x

(k)
2 , ..., x

(k)
n (where k is

the trial index and n is the number of levels in the hierarchy).” In their frame-
work, x1 represents a binary variable representing belief about the accuracy [0 or
1] of advice provided by another actor. This variable depends on x2, representing
“the belief about the adviser’s tendency to deliver accurate advice”, which in
turn depends on x3, the “volatility of the adviser’s intentions”; the latter two
evolve as Gaussian random walks, and represent beliefs about advice accuracy.
They develop the following generative model for their HGF implementation:

p

(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k−1)
2 , x

(k−1)
3 |κ, ω, ϕ

)
=

p

(
x

(k)
1 |x

(k)
2

)
p

(
x

(k)
2 |x

(k−1)
2 , x

(k)
3 , κ, ω

)
p

(
x

(k)
3 |x

(k−1)
3 , ϕ

)
p

(
x

(k−1)
2 , x

(k−1)
3

)
where κ represents the coupling between x2 and x3, ω is the “tonic compo-

nent of the log-volatility at the second level”, and ϕ denotes the evolutionary
rate of x3. This HGF model was used to describe participants’ learning of their
corresponding actor’s intentions and the parameters used be associated with
different behaviors, employed strategies and tendencies.

While we can think of ToM as an ability and suggest individual models for it,
in hopes of raising discussion to bring generalization to the concept, we introduce
a different perspective treating ToM as a map. Consider an observer O and a
subject, S. Specifically, O has a function,

TO,S : C −→ F,

mapping from a current state, C, of S to its future state, F . Thinking of ToM
fundamentally, the past experiences of O influence its characterizations on the
subject; see Rabinowitz [69] for example. So we can refine the map:

TO,S : C × E −→ F,

where E represents the past experiences of O.
We could break down TO,S : One could argue that past experiences, or at

least the way they are perceived, are shaped by various characteristics of the
individual observer. In this manner, we can think of E as an output to another
map,

Pθ : I −→ E,

where I represents physical inputs; P is initially parametrized by a quantifica-
tion, θ, of the observer’s tendencies, temperament, biases, etc. For AI models,
these concepts would most certainly depend on their training. Training sets im-
bued with bias or specialized on certain data/tasks will result in differing θ
values. This quantification can be, and is, the basis of research in the cognitive
sciences and psychology, (see Diaconescu [18], Patricio [63] and [62]). This seems
to lead us in a circle: Doesn’t this mean we need a characterization of the ob-
server’s ToM before we can use them to model others? Perhaps a model of this
nature may lead to development of a series of models each with differing per-
spectives that could act in a collaborative way. Intuitively, for any two human
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observers, one does not have the same ToM as the other about a subject, which
we can formalize:

∀i consider Oi with ToM function TOi
, we have TOn

6= TOm
for n 6= m.

These differences in TOn and TOm can be defined in Pθn and Pθm , respectively.
This particular uniqueness endorses collaboration in humans (“two heads are
better than one”) and immediately gives rise to a concept for adversarial in-
teraction. There is, of course, a concept for neutral (neither cooperative nor
adversarial) engagements, as well.

Another angle considers a ToM function as a composition. One example:

T1 : C × E −→ R (1)

T2 : R −→ F, (2)

where R is an (intermediate) characterization of a subject based on its past and
current behaviors.

There are likely several decompositions of T , but this perspective allows us
to consider T as a collection of functions each responsible for various ToM tasks;
allowing us the flexibility of refining several sub-models that work in conjunction
with one another. ToM using solely visual input, intuitively, uses different facul-
ties than that which uses solely audible inputs. Recognition that some visual and
audio inputs may be linked provides synergistic inferencing capabilities, which
we alluded to above with using “series” of ToM models. The difference is using
several ToM models with differing θ (e.g. two people reasoning on the same social
phenomena) versus a one model capturing multiple ToM sub-abilities (e.g. one
person reasoning on two different social phenomena); of course, there’s nothing
disallowing mingling of these two concepts.

Viewing computational ToM through this generalized perspective allows for
further concepts, like time evolution. We slowly push towards a computational
concept for ToM that accounts for multiple modalities, multiple agents and shift-
ing environments, but we must also consider how the dynamics of these elements
shape ToM reasoning; after all, ToM considers past experiences, so how do cur-
rent experiences transition to ingrained knowledge of a model; that is, how do
we ensure models are continuously learning and evolving? (See the following for
research in AI continual learning: Wang [91], Liu (2017) [50].) The introduction
of a time parameter for T can help conceptualize, but specific implementation
needs careful treatment. As a model continuously learns we can further hold
that, similar to two agents espousing different ToM models, that for any one
agent, a mental model at one timestep may not necessarily be identical to that
of another timestep; that is, given a particular observer O with ToM function
TO,t at a particular time t, we hold that

∀ timesteps ti,∃ a timestep tj (i < j) such that TO,ti 6= TO,tj .

That is, we hold that a model must evolve after a certain point. We leave open
discussions on whether it makes sense for a model to be held constant in certain
circumstances, and, broadly, how to continue developing these mathematical
ideas.
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6 Discussion & Conclusion

In this paper, we attempt to provide additional perspective for computational
ToM by exploring research through four directions: (1) data, (2) metrics, (3)
models, and (4) mathematical formalizations. The ideas in this paper most cer-
tainly lend themselves to further exposition and rigor and we welcome such
discussions. Finding data to reliably train models remains a generic research
challenge; we can mitigate these challenges through research into generative tech-
nologies. Measuring ToM usage is reduced to measuring performance of compu-
tational systems on a selection of concrete tasks associated with ToM abilities.
Adaptability to various tasks is key, be it through enhancements in transfer
learning, applications of meta-learning, etc. One discussion we hope to address
later is research comparing ToM acquisition and usage from pre-/non-verbal hu-
mans to those with verbal capabilities and how it allows discussion into ToM
capabilities of multimodal models. Just as biology inspired research and design
of convolutional neural networks in computer vision, and other artificial capa-
bilities, we discussed similar biologically-inspired pathways for developing ToM
faculties. We mentioned the possibility of a multimodal“aware” model when pro-
viding an example for explaining behaviors of an agent acting within a regime
not accessible to the observer. One question we hope to discuss further is would
the observer’s realization of extraneous regimes fall into ToM phenomena or is
it governed by another? We aimed to open up discussion about the similarities
and differences between mathematical models of ToM, as well as provide the ini-
tial seeds to generalize some concepts to provide further perspective on tackling
research in this field.
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