# IGERT

Integrative Graduate
Education and
Research Traineeship

# Qualifying quantities: the contribution of evaluative modifiers

Erin Zaroukian • zaroukian@cogsci.jhu.edu • Johns Hopkins University



# Abstract

Goal: Explain the meaning and distribution of  $a \ good$  as a numeral modifier, as in (1)

(1) John read a good ten books.

#### Proposal:

- A good conveys that the speaker believes the quantity expressed is
- 'a lot'
- likely
- These can conflict with contributions of other modifiers to restrict its distribution
- A good is a parameterized determiner, which further limits its distribution

## Puzzle

Q: Why does  $a \ qood$  give rise to the felicity pattern in (2)?

- (2) a. John read about a good ten books.
  - b. John read at least a good ten books.
  - c. #John read at most a good ten books.
  - d. ?John read more than a good ten books.
  - e. #John read less than a good ten books.
- Naive theory:  $a \ good \ n = \ge n$
- But this doesn't reflect the pattern in (2) (e.g. (2b) doesn't seem redundant, cf. John read at least at least ten books)

## • Proposed theory:

- -A good expresses that the speaker thinks the quantity expressed is 'a lot'  $-\#x \geq d_s$
- It also expresses that the speaker thinks the quantity expressed is likely  $\square \# x = d$
- ( here represents human necessity (Kratzer, 1981), i.e. true in all closest accessible worlds)

# More on distribution

- $\bullet$  In some ways,  $a \ good$  has a similar distribution to  $at \ least$
- (3) David is {at least/a good} 6 feet tall(er than Kate).
- But a good requires a quantity to directly modify, while at least is more flexible
- (4) David is {at least/\*a good} tall.
- (5) John read ten books, {at least/\*a good}.
- (6) John read {at least/\*a good} about ten books.
- (7) John read about {\*at least/a good} ten books.

## • Proposed theory:

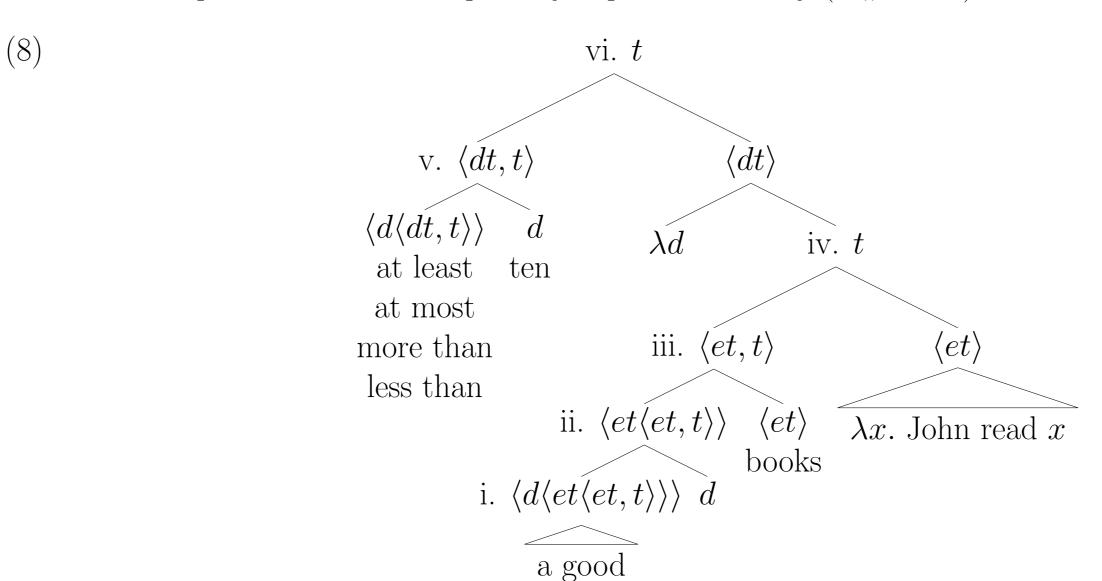
- -A good is a parameterized determiner (Hackl, 2000)
- It therefore requires a degree argument and it can be modified by degree modifiers (e.g. at least, about) but cannot modify them

## Hackl summary

- -Accounts for attested differences between quantifiers (all treated the same under a standard Generalized Quantifier approach) by decomposing them into combinations of parameterized determiners (e.g. (null) many) and degree modifiers (e.g. at least)
- -NB at least is a degree modifier, I claim that a good is a parameterized determiner

# Analysis

#### Desiderata


- Account for the pattern in (2)
- Account for distribution in (3)-(7)

#### Semantics

• I treat  $a \ good$  as a parameterized determiner (Hackl, 2000) with two presuppositions

— that the speaker believes the quantity expressed is 'a lot' (meets some salient threshold,  $\#x \ge d_s$ )

— that the speaker believes the quantity expressed is likely ( $\boxdot \#x = d$ )



- i.  $[\mathbf{a} \ \mathbf{good}] = \lambda d_{Card}.\lambda f_{\langle et \rangle}.\lambda g_{\langle et \rangle}.\exists x : \#x \ge d_s \& \boxdot \#x = d [f(x) \& g(x) \& x \text{ has } d\text{-many parts in } f]$
- ii.  $[\![\mathbf{a}\ \mathbf{good}\ d]\!] = \lambda f_{\langle et \rangle}.\lambda g_{\langle et \rangle}.\exists x : \#x \geq d_s \& \boxdot \#x = d [f(x) \& g(x) \& x \text{ has } d\text{-many parts in } f]$
- iii.  $[a \ \mathbf{good} \ d \ \mathbf{books}] = \lambda g_{\langle et \rangle} \exists x : \#x \geq d_s \& \boxdot \#x = d \ [book(x) \& g(x) \& x \text{ has } d\text{-many parts in } book]$
- iv.  $[\![ \mathbf{John\ read\ a\ good\ } d\ \mathbf{books} ]\!] = \exists x : \#x \ge d_s \& \boxdot \#x = d\ [book(x) \& read(j, x) \& x \text{ has } d\text{-many parts in } book]$
- v.  $[at least ten] = \lambda D_{\langle dt \rangle}. \square D(10) \& \diamond [\exists m > 10 : D(m)]$
- $[\![\mathbf{at}\ \mathbf{most}\ \mathbf{ten}]\!] = \lambda D_{\langle dt \rangle}. \diamond D(10) \& \neg \diamond [\exists m > 10 : D(m)]$
- [more than ten] =  $\lambda D_{\langle dt \rangle}$ .# $(\lambda n.D(n)) > 10$ [less than ten] =  $\lambda D_{\langle dt \rangle}$ .# $(\lambda n.D(n)) < 10$
- vi.  $[(2b)] = \square[\exists x : \#x \ge d_s \& \boxdot \#x = 10 \ [book(x) \& read(j, x) \& x \text{ has 10-many parts in } book]] \& \Diamond[\exists m > 10[\exists x : \#x \ge d_s \& \boxdot \#x = m \ [book(x) \& read(j, x) \& x \text{ has } m\text{-many parts in } book]]]$
- $[(2d)] = \#(\lambda n.[\exists x : \#x \ge d_s \& \boxdot \#x = n [book(x) \& read(j, x) \& x \text{ has } n\text{-many parts in } book]]) \ge 10$
- $[(2e)] = \#(\lambda n.[\exists x : \#x \ge d_s \& \boxdot \#x = n [book(x) \& read(j, x) \& x \text{ has } n\text{-many parts in } book]]) < 10$

# Patterns in (2): (2c)-(2e) highlight $\neq$ 10, conflicts with $\odot \# x = 10$

- < 10 is highlighted in (2c), (2e) (cf.  $\Box$ 10 in at least)
- > 10 is highlighted in (2d)
- This pattern holds for other modifiers as well:
- other prominently negative modifiers are infelicitous
- (9) #barely a good ten
- (cf. Fortunately, John is barely sick)

(cf. Geurts and Nouwen, 2007)

- non-prominently negative modifiers (Nouwen, 2006) are felicitous
- (10) almost a good ten
- (cf. #Fortunately, John is almost sick)

# Patterns in (3)-(7):

- a good is a parameterized determiner
- Takes a cardinality -\*(4), \*(5)
- Can be modified by degree modifiers like  $at \ least, \ about (7)$
- Cannot modify degree modifiers -\*(6)

# Evaluativity

- A good does not indicate that the speaker considers the argument to be 'good' (cf. (11))
- I've been sick a good two weeks now, and I've hated every second.
- Same can be seen with adverb well
- (12) He got here {well/a good while} after ten o'clock.
- (Bolinger, 1972, p. 37)
- Other evaluatives contribute a more transparent meaning
- e.g.  $astonishing \rightarrow high degree of 'astonishing'-ness$
- (13) a. The game was an astonishing four minutes/hours long.
  - b. The game was astonishingly long/short.
- Good and bridges the gap has an 'a lot' ('thoroughly') component like a good, also seems transparently good, indicating that the speaker is pleased
- (14) {%Our prank made Chris/#That prank made me} good and irritated.
- (15) That {jerk/#sweetheart} is good and dead.
- I treat the non-at-issue contributions of *a good* as presuppositions, but this kind of expressive content is usually in the CI domain (Potts, 2003)
- Under most tests,  $a\ good$  does not pattern straight-forwardly as either

-A qood also has a more grammaticalized non-at-issue contribution

Conclusions

## Summary

- A good is a Hackl-style parameterized determiner
- $-A \ good$  has the same distribution as a parameterized determiner it must modify a quantity (e.g.  $ten\ books$ ) and it can be modified by degree modifiers (e.g. about,  $at\ least$ ), but it cannot modify degree modifiers
- A good expresses that the speaker believes that the quantity in question is 'a lot' and that it is likely
- $-A \ good$  is not felicitous with modifiers that conflict with this possibility component, whether by having a salient < component (e.g.  $at \ most$ ,  $less \ than$ , barely) or a salient > component (e.g.  $more \ than$ )

## Bigger questions

- Q: What is the nature of quantifiers?
- This provides further support for a Hackl-style analysis
- Q: What is the nature of conventional implicatures?
- This provides further support that it is not a uniform category

## Remaining questions

- Q: How does data like (16) and (17) fit in to this analysis?
- (16) John read a good deal of books.
- (17) John read a good many books.
- Q: What relation does this have to nominal modifier?
- (18) I like a good book.

## References

Bolinger, Dwight. 1972. Degree words. The Hague: Mouton.

Geurts, Bart, and Rick Nouwen. 2007. At least et al.: The semantics of scalar modifiers. Language 83(3):533–559.

- Hackl, Martin. 2000. Comparative quantifiers. Doctoral Dissertation, Massachusetts Institute of Technology.
- Kratzer, Angelika. 1981. The notional category of modality. In Words, worlds, and contexts: New approaches to word semantics, ed. H. J. Eikmeyer and H. Rieser, 38–74. Berlin: de Gruyter.
- Nouwen, Rick. 2006. Remarks on the polar orientation of almost. Linguistics in the Netherlands 23(1):162–173.
- Potts, Christopher. 2003. The logic of conventional implicatures. Doctoral Dissertation, UC Santa Cruz.