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Abstract—Controlled natural language (CNL) has great poten-
tial to support human–machine interaction (HMI) because it pro-
vides an information representation that is both human readable
and machine processable. We investigated the effectiveness of a
CNL-based conversational interface for HMI in a behavioral exper-
iment called simple human experiment regarding locally observed
collective knowledge (SHERLOCK). In SHERLOCK, individuals acted
in groups to discover and report information to the machine us-
ing natural language (NL), which the machine then processed into
CNL. The machine fused responses from different users to form a
common operating picture, a dashboard showing the level of agree-
ment for distinct information. To obtain information to add to this
dashboard, users explored the real world in a simulated crowd-
sourced sensing scenario. This scenario represented a simplified
controlled analog for tactical intelligence (i.e., direct intelligence
of the environment), which is key for rapidly planning military,
law enforcement, and emergency operations. Overall, despite close
to zero training, 74% of the users inputted NL that was machine
interpretable and addressed the assigned tasks. An experimental
manipulation aimed to increase user–machine interaction, how-
ever, did not improve performance as hypothesized. Nevertheless,
results indicate that the conversational interface may be effective
in assisting humans with collection and fusion of information in a
crowdsourcing context.

Index Terms—Controlled natural language (CNL), conversa-
tional interface, human–computer collaboration (HCC), human–
machine interaction (HMI), tactical intelligence.

Manuscript received August 1, 2016; revised March 6, 2017; accepted April 9,
2017. This work was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Numbers
W911NF-06-3-0001 and W911NF-16-3-0001. The work of E. G. Zaroukian
was supported by an appointment to the U.S. Army Research Laboratory Post-
doctoral Fellowship Program administered by the Oak Ridge Associated Uni-
versities. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence, or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon. This pa-
per was recommended by Associate Editor L. Chen. (Corresponding author:
Alun Preece.)

A. Preece and W. Webberley are with the School of Computer Sci-
ence and Informatics, Cardiff University, Cardiff, CF10 3XQ, U.K. (e-mail:
PreeceAD@cardiff.ac.uk; WebberleyWM@cardiff.ac.uk).

D. Braines is with Emerging Technology Services, IBM United Kingdom
Ltd., Winchester, SO21 2JN, U.K. (e-mail: dave_braines@uk.ibm.com).

E. G. Zaroukian and J. Z. Bakdash are with the Human Research and Engi-
neering Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783 USA
(e-mail: erin.g.zaroukian.ctr@mail.mil; jonathan.z.bakdash.civ@mail.mil).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/THMS.2017.2700625

I. INTRODUCTION

CONTROLLED natural languages (CNLs) support human–
machine interaction (HMI) or collaboration by provid-

ing an information representation that aims to be human
readable and writable, while also being machine processable [1].
In the context of human–computer collaboration (HCC) [2], this
means that CNLs provide a way to exchange information be-
tween human and software agents using a common mutually
understandable language. While the design of CNLs for HCC
involves tradeoffs between supporting robustness of machine
processing and human friendliness,1 CNLs are designed to be
more human-friendly than traditional information and knowl-
edge representations, offering the advantage of lower training
overheads [3]. Simpler interfaces and ease of use have be-
come key factors in the design of effective mobile applications
(“apps”) to support users performing tasks in situ with minimal
training [4], where people are typically faced with a range of dis-
tractions caused by their environment, and software operation
will often be secondary to their other activities. Also, the ability
to quickly report, share, and fuse information is important in
military and other safety-critical environments [5].

This paper reports behavioral research that assessed HMI
with a CNL-based conversational agent, implemented as a mo-
bile app. Individual users acting in groups collaboratively built a
shared CNL knowledge base (KB) via a process of inputting nat-
ural language (NL) and confirming equivalent CNL suggested
by the agent. App users explored the real world in a simulated
crowdsourced sensing scenario, obtaining information (e.g., the
color of Professor Plum’s shirt) through observation and through
interaction with actors in various roles. Because tactical intel-
ligence (i.e., direct reports of events and situations in the en-
vironment) is key for planning military, law enforcement, and
emergency operations in situations such as natural disaster re-
lief or terrorist attacks, this scenario represented a simplified, but
controlled, analog for tactical intelligence. The research design
was motivated by a need to support users conducting informa-
tion tasks in situ, for example, providing reports from the field on
current events, seeking information relevant to their current situ-
ation, or instructing a range of “smart” devices—such as sensing
systems or robots—to assist them. This motivation is consistent
with the U.S. Department of Defence’s Third Offset Strategy

1For example, to avoid ambiguity, CNLs allow only certain syntactic struc-
tures (e.g., “I shot an elephant in my pyjamas” might be expressed in a CNL as “I
shot an elephant and I was in my pyjamas”/“I shot an elephant and the elephant
was in my pyjamas”), but this can result in a language that is less natural to the
user.
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for enhancing human capabilities through human–machine col-
laboration using artificial intelligence.2

Because the CNL representation of information for the con-
versational agent would be both human readable and machine
processable, we hypothesize this would facilitate effective col-
laboration between humans and machine agents for the informa-
tion tasks. The focus of our research is to assess if individuals,
with minimal training, can effectively use the conversational
agent to collaborate on information (gathering) tasks in mobile
real-world settings.

Because of our focus on agent usability in a real-world envi-
ronment, rather than a well-controlled laboratory environment,
we use a quasi-experimental design, which has characteristics
of both a study (no experimental manipulation) and an experi-
ment [6]. Here, the nonexperimental aspect was agent usability
and the experimental aspect was the manipulation of user in-
teraction with the conversational agent. A quasi-experiment has
tradeoffs compared to a well-controlled laboratory experiment:
Greater generalizablility of results (to the real world), but in-
creased susceptibility to confounding variables that may affect
results (see [6] and Section V-D).

A. Motivation

We focus on assessing the usability of the conversational
agent as a potential cognitive artifact, a tool that enhances hu-
man capabilities by externalizing aspects of cognition. Cognitive
artifacts are defined as “artificial devices designed to maintain,
display, or operate upon information in order to serve a represen-
tative function” [7]. The purpose of the conversational agent as a
cognitive artifact was to enable users, who had minimal training
in the CNL knowledge representation, to create a shared and
dynamic KB for storing information. Once a KB exists, soft-
ware agents can perform a variety of tasks to assist humans [5],
[8]3; the goal of this work was not to examine those kinds of
task but merely to test that users can create a KB that is machine
processable.

Framing the use of CNL in conversational-style interactions
between human and machine is partly inspired by the recent
resurgence of interest in NL interfaces. Widespread access to
commercial products such as Apple’s Siri,4 Amazon’s Alexa,5

Google Now,6 and IBM’s Watson7 provides users with a familiar
context in which to conduct information tasks in situ. In contrast
to widely used commercial products, our conversational inter-
face focused on building a KB (e.g., North Road is blocked by

2https://web.archive.org/web/20170112191920/https://www.defense.gov/
News/Article/Article/628154/work-human-machine-teaming-represents-
defense-technology-future

3As a simple example of the kind of information aggregation task agents can
do once the KB is populated, users were provided with a visualization of the
shared KB in the form of a dashboard.

4https://web.archive.org/web/20160628202009/http://www.apple.com/ios/
siri/

5http://web.archive.org/web/20170208020449/https://developer.amazon.
com/alexa

6https://web.archive.org/web/20170110125710/https://en.wikipedia.org/
wiki/Google_Now

7https://web.archive.org/web/20160628201902/http://www.ibm.com/
watson/

Fig. 1. Screenshot of the conversational agent, illustrating the conversational
protocol.

heavy snow) rather than merely querying an existing one (e.g.,
What is the weather like today?).

Interaction with the conversational agent is controlled by a
protocol based on linguistic speech act theory [9]. The effects
of speech acts on the KB are persistent and affect subsequent
interactions, for example, if a user tells the agent something, and
some user subsequently asks about the same thing, the agent’s
response should reflect what it has previously been told. This
principle, that the state of the world is modified by an exchange
of messages, has underpinned much of the work in software
agent communication languages [10]. The conversational inter-
face in the experiment presented here operated in two conditions,
corresponding to the range of speech acts supported: a condi-
tion in which the user and software agent could ask each other
questions, and one in which they could not. We hypothesized
that the condition with ask speech acts would facilitate greater
general usability with the conversational interface.

In keeping with users’ common expectations regarding mo-
bile conversational agents, and to minimize training overheads,
it is unrealistic to expect human users to communicate with soft-
ware agents using CNL exclusively. An important feature of the
experiment reported here is that users are permitted to interact
with the conversational agent in NL. Before acting upon any NL
input, the agent will attempt to interpret the NL by generating
a piece of CNL that it will ask the user to confirm. Confirma-
tion by the user will permit the agent to act upon the received
message. For example, if the message is a query, then the agent
will try to provide a response; if it is a piece of new information,
then the agent will attempt to integrate it into its current KB and
share it with other users and agents. An example of this can be
seen in a screenshot of the CNL conversational agent in Fig. 1,
where the user Alun tells the agent Sherlock a piece of infor-
mation in NL. Sherlock then translates this into CNL and asks
Alun to confirm, Alun confirms it, and this information is added
to the KB. (The agent’s restatement of the confirmed CNL is
intended as feedback to the user that the statement was added to
the KB.)
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B. Hypotheses

To summarize, the two main hypotheses are as follows.
1) Overall usability (nonexperimental): The conversational

agent would have high usability as an effective cog-
nitive artifact. Usability was operationalized as perfor-
mance [11]: the number of user-inputted NL messages
that were both machine interpretable and confirmed by
the user.

2) Agent interaction capability (experimental): The conver-
sational agent would be more usable with a broader range
of speech acts compared to no broader range of speech
acts.

This paper is organized as follows: Section II reviews back-
ground and related work in HCC. Section III describes the CNL-
based approach used in the experimental evaluation. Section IV
describes the design of the experiment. Section V presents our
results. Section VI reflects on the outcomes of the research and
points to future work.

II. RELATED WORK

This research focuses on the use of CNLs for HCC, where
humans and machines work together. The use of CNL facilitates
machine assistance for users, but the focus is not on human
automation in the sense of reducing human input or control [12].
Similarly, in the context of sensor and information fusion, the
focus of the research is not on technical aspects of collecting
and processing data and information (e.g., topics such as sensor
capabilities, network bandwidth, and algorithms for sensor and
information fusion) but on the ability of humans to understand
machines to make informed decisions [13], [14].

Most prior research on social sensing (data and information
derived from humans, such as geolocation, search engine terms,
and social media like Facebook or Twitter) to infer situations and
events has been observational [15]. Consequently, inferences
made using social sensing can be quite wrong [16]. Methods do
exist to validate social sensing data [15] (e.g., the veracity of
social media statements is typically assessed with probabilistic
uncertainty bounds using computational approaches), but val-
idation is fairly uncommon because ground truth is rarely ob-
tainable. The scenario-based research design presented in this
paper provides a ground truth and so avoids inferential pitfalls
of not having correct answers to evaluate against.

Despite the resurgence of interest in intelligent language-
understanding systems, open problems include how to imbue
machines with more natural conversational behaviors includ-
ing turn-taking and user interruptions [17], and how to operate
effectively beyond static domains [18] to reduce problems of
brittleness common in these kinds of systems. Mass-market in-
telligent agents such as Siri and Google Now remain essentially
confined to simple ask–tell interactions rather than flowing con-
versations. User familiarity with these modes of use led us for
this experiment to confine ourselves in the main to ask-tell-style
interactions, with emphasis on reduction of ambiguity through
confirmatory interactions.

The conversational approach is one type of HCC in which
humans and intelligent systems work together with a common
goal [2]. There is a growing body of HCC work in relation

to collaborative situation awareness and intelligence analysis.
Analysts are increasingly well versed in modern collaboration
environments and social media, and systems are emerging that
seek to combine the benefits of these approaches with exist-
ing software tools and processes for structuring and supporting
tactical intelligence analysis. A recent example of this in [19]
seeks to enable analysts to identify the decision-relevant data
scattered among databases and the mental models of other per-
sonnel by employing familiar social media-style collaboration
techniques. There is some evidence to indicate that not only is
it useful to collaborate within the same analyst team/group, but,
when collaboration is extended to the crowd and mediated by
an intelligent software agent, the outcome of the intelligence
analysis can be greatly improved [20]. The authors propose a
web-based application to collate imagery of a particular loca-
tion from media sources and provide an operator with real-time
situation awareness. Such approaches are promising, showing
that a richly collaborative environment—social, HCC, or both—
can be a blessing if machines can help in sorting, filtering, and
managing large amounts of information. However, the same ap-
proaches can be a curse if the volume of information is simply
increased.

The broader context and application domain for the current
research is facilitating intelligence processes for the rapid
cycles of information collection, interpretation, and decision
making. Management of sensing assets for intelligence,
surveillance, and reconnaissance traditionally follows a
well-known cycle, referred to in the UK as DCPD: direction,
collection, processing, and dissemination [21]. The U.S.
variant of the DCPD cycle called TCPED—tasking, collection,
processing, exploitation, and dissemination—refers to direction
as “tasking” and divides the processing step into two parts,
“processing” and “exploitation,” where the former is essentially
preprocessing to put data into a usable form, and the latter
involves putting the information into the context of a particular
decision. In the context of the experiment reported here, the
conversational agent has the ability to direct/task humans
(as sensors) via a mobile app, by asking them questions.
Information collection is done via the humans telling the agent
answers. Processing/exploitation is carried out by the agent,
which assembles a picture of the entire situation. This picture
is then disseminated to the humans via the mobile app.

III. APPROACH

As mentioned in the introduction, the design of CNLs typi-
cally involves tradeoffs in terms of the complexity of the lan-
guage from both the human and machine perspectives; simpler
linguistic forms are easier for machines to process robustly, but
these can seem awkward and unnatural for humans and are lim-
ited in terms of what can be expressed. Conversely, more natural
linguistic forms for humans can lead to ambiguity and loss of
robustness in machine processing.

The research presented here uses a particular form of CNL
developed through the Network and Information Sciences In-
ternational Technology Alliance (ITA)8 called ITA Controlled

8http://nis-ita.org
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English (CE), designed for low linguistic complexity and to
eliminate ambiguity in expressions [22]. The choice of this par-
ticular CNL was determined by such research being part of a
larger body of work using ITA CE to support decision making
and collaborative tasks. The language will be referred to simply
as CE in this paper.

A. Controlled English

The CE language specification includes linguistic constructs
for defining conceptual models (ontologies), instances (facts),
and rules, although the latter are outside the scope of this pa-
per. For illustration, a sample CE model definition is shown as
follows:

conceptualise a ˜ character ˜ C that
is a sherlock thing and
is a locatable thing and
has the color C as ˜ shirt color ˜.

conceptualise the character C
˜ works for ˜ the organization O and
˜ eats ˜ the fruit F and
˜ likes ˜ the hobby H.

These two CE conceptualise sentences define a new
concept in a CE model (ontology). New model terms—concepts,
properties, and relationships—are introduced between the tilde
(˜) symbols. The first sentence introduces the new concept
character, defining it as being a child of the parent con-
cepts sherlock thing and locatable thing. The first
sentence also contains a property definition for the charac-
ter concept (denoted by the has keyword, shirt color,
and the type of the property value, color). The second
sentence expands the definition of character by adding re-
lationship definitions and the types of the related things, for ex-
ample, a character works for an organization and
eats a kind of fruit. Being a child of the concepts sher-
lock thing and locatable thing means that char-
acter also inherits any properties and relationships defined
on its parent concepts, for example, the concept locatable
thing has a relationship is in with instances of the concept
location.

Instances (facts) are defined in CE using the following syn-
tax. The following example shows an instance of the concept
character, as defined above.

there is a character named ‘Prof Plum’
that is in the location ‘N215’ and
eats the fruit ‘banana’ and
has the color ‘white’ as shirt color.

This instance is namedProf Plum and, due to being also an
instance of locatable thing, has an is in relationship
with an instance of location, called N215. The instance
Prof Plum also has an eats relationship with an instance
of the concept fruit, banana, and a value for its shirt
color property, white.

These examples are drawn from the domain of the research
described below in Section IV. While this domain is deliberately
simplistic, CE has also been used extensively in real-world ap-
plications including mission planning [23], intelligence analy-

sis [24], and coalition knowledge management [25]. Moreover,
modeling in CE is intended to be flexible, supporting the creation
of extensible models with whatever concepts, properties, and re-
lationships are needed. CE models can be extended at runtime,
though this feature was not explored in the current research.

B. Conversational Protocol

While more human-friendly than traditional information and
knowledge representations, the above examples demonstrate
that the design of CE favors robust machine processing over
naturalness. For example, the need for syntactic marker phrases
such as there is a in instance definitions, and the specifi-
cation of type information in property and relationship expres-
sions, can make the resulting sentences seem cumbersome and
may reduce the human user’s speed and accuracy of comprehen-
sion. One approach to addressing this issue is via tool support,
for example, the provision of syntax-directed editing and auto-
complete. Another approach is to allow humans to use NL and
to provide software that mediates between NL and CE.

Full details of a protocol to support conversations that flow
between NL and CE are given in [26]. The experiment reported
in Section IV focuses on two main types of interaction:

1) confirm interactions where the initiator issues an NL mes-
sage, which the receiver attempts to re-express in CE, and
seeks confirmation from the issuer that the CE version is
an acceptable interpretation of their message9;

2) ask–tell interactions where the initiating agent issues a
query (ask) and the receiver responds in some way it
deems to be appropriate (usually by answering the query
with a piece of information, that is, a tell).

An example interaction illustrating the use of this protocol is
discussed in the next subsection.

The protocol is necessary to control the flow of conversations
not only to make explicit the expectations on what the receiver
of a message of a particular kind should do, as is traditional
in speech act-based agent communication protocols [10], but
also to avoid any potential for ambiguity in whether a partic-
ular piece of text is NL or CE. The confirm interactions mark
the boundaries between NL and CE in the human–machine
conversation.

C. Prototype Conversational Agent

The prototype conversational agent app was implemented to
test the effectiveness of CE for machine-assisted performance
of information tasks in a mobile setting. A screenshot is shown
in Section I in Fig. 1. The conversation between the user (in
this case, “Alun”) and the agent (“Sherlock”) is displayed in
the style of a conventional smartphone text “chat” thread. The
users type their NL input into the panel at the bottom. The users’
messages then appear shifted to the right of the main display,
with the agent’s responses appearing on the left.

The first three messages comprise a confirm interaction. The
initial message from the user (“Dr Finch is in the gold room”)
is in NL. The agent uses a relatively simple “bag of words”

9The protocol allows for any interaction to be initiated by human or machine;
however, in this case, the initiator is usually a human.
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algorithm (representing user input as a multi-set of word oc-
currences, disregarding grammar) [5] to interpret this in terms
of a CE model of the world. Its attempt is shown in the sec-
ond message (“the character ‘Dr Finch’ is in the location ‘Gold
Room”’), which the user then confirms is acceptable.10 Follow-
ing a positive confirmation, the agent then repeats the confirmed
CE form as acknowledgment—a CE tell message)—and adds
it to its KB. If the user rejects the agent’s interpretation, then
nothing is added to the agent’s KB and the user can try again
by rephrasing the message. Depending on the agent’s configura-
tion, it may also share this information with other agents (via a
CE tell). In this configuration of the agent, either the user or the
agent can ask questions of the other party; the example shows
the software agent asking the user a question (“What sport does
Dr Finch play?”) in the bottom most message (initiating an ask–
tell interaction), with the user shown to be entering his or her
response in the input panel (“Dr Finch plays baseball”).

The agent is configurable into multiple variants to test al-
ternative experimental conditions. For example, some variants
have the ability to support ask messages from the user and/or
the agent; some support syntax-directed autocomplete (shown
by the tick above the user input panel); some can operate ei-
ther in offline mode or online, while others assume a network
connection (in the screenshot, the online status of the agent is
shown by the green marker above the input panel). The purpose
of the number to the right of the username on the display, and
the dashboard button, is explained in Section IV.

The prototype agent is implemented as a Web app in
JavaScript to run in Web browsers on a variety of devices, in-
cluding iOS and Android smartphones and tablets, as well as
laptop and desktop computers.

IV. USER EVALUATION

The primary intent of the user evaluation was to gather ev-
idence for whether the CNL-based approach to HCC on in-
formation tasks described in the previous section can be used
effectively by users, with low training overheads. To maintain
ecological validity in supporting small teams at the tactical edge,
it is important that:

1) participants should be assigned to carry out information
tasks in situ;

2) successful use of the CNL-based approach should allow
users to gain measurable assistance from software agents
from their perspective;

3) there should be some element of human–human collabo-
ration as well as HCC [27].

The design of the experiment was motivated by a desire to
emulate aspects of tactical intelligence tasks typically carried
out by military, law enforcement, and other individuals on pa-
trol in field settings, particularly where cooperation is needed
between members of multiple partners in a coalition [8]. In the

10While this final confirm takes extra time, voice communications have stan-
dard confirmation terms (e.g., roger, wilco, copy). It remains an open question
whether this would be appropriate for HCC/HMI, and this is worth considering
in future work.

design, the information tasks were simplified to allow partici-
pation without any specific tactical intelligence training and to
ease some aspects of the natural language processing (NLP)
performed by the conversational agent (since NLP was not the
focus of the research).

In the experiment, the conversational agent was designed to
assist the participants in their tasks by collecting disparate pieces
of user-reported information into a shared KB. To motivate
participants to provide information, they received an individual
score with one point for each piece of confirmed information
that was relevant to the assigned tasks; this score is shown on
the app in Fig. 1 to the right of the displayed username. We
refer to each piece of task-relevant confirmed information as an
assertion; an individual’s score is a count of their assertions.
Participants were also able to view a visualization of the shared
KB in the form of a dashboard (accessible via the button at the
top left of the app in the figure). Note that, while it was possible
for participants to enter information into the KB that was not
relevant to the assigned tasks, they would not earn any points
for such input.

Groups of participants were assigned the same tasks and given
different variants of the conversational agent and supporting in-
frastructure. To address Hypothesis 1, which involves no exper-
imental manipulation, we measured usability, operationalized
by performance and quantified by total participant assertions
(i.e., the successful performance of the operation of adding in-
formation to the KB). To address Hypothesis 2, the dependent
variable in this experiment again was usability, with the level
of agent interaction capability (confirm only versus confirm and
ask–tell) as the independent variable.

Both the experiment and the conversational agent were called
Simple Human Experiment Regarding Locally Observed Col-
lective Knowledge (SHERLOCK), a name chosen to give par-
ticipants a sense that their tasks may involve elements of
detection.

A. Participants

Participants were drawn from a sample of convenience:
they were second- and third-year UK undergraduate students
studying human–computer interaction and knowledge manage-
ment at Cardiff University. To fit into the students’ timetable,
the experiment was run three times over two days, with each stu-
dent attending one session. Individuals were randomly assigned
to equal-sized groups in advance but some opted not to attend
their assigned session. This resulted in three groups (A, B, and
C), consisting of 19, 9, and 11 members, respectively (N = 39).
While there was no explicit requirement for equal-sized groups,
we discuss issues arising from this nonhomogeneous group size
in Section V-D.

The experiment was run immediately following a 50-min lec-
ture on the general principles and applications of CNLs and a
brief demonstration of the use of the conversational agent. Be-
cause our primary interest was in the usability of this agent
with little to no prior training, participants were given no op-
portunity to practice using the agent before participating in the
experiment.
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B. Design and Hypotheses

Recall that Hypothesis 1 (overall usability) was nonexperi-
mental, whereas Hypothesis 2 was an experimental manipula-
tion of the conversational interface. The experimental design
was a single factor with two levels between participants. In the
confirm condition, the group members were given access to a
limited version of the conversational agent supporting only con-
firm interactions, that is, they were able to submit messages to
the agent in NL and confirm (or not) the CE of what the agent
understood. In the ask–tell condition, each group member was
given access to a fuller version of the conversational agent sup-
porting question answering (ask–tell interactions) initiated by
both human and machine, in addition to confirm interactions.
For overall usability, our hypothesis was that participants would
be able to utilize the conversational agent to make assertions
to the shared KB. As for the role of conversational protocol
(level of agent interaction capability), our hypothesis was that
ask–tell condition participants would submit more assertions as
the additional features would enable them to 1) become more
aware of how the agent processed the CNL and thus able to
communicate with it more effectively and 2) be directed by the
agent to provide specific information.

Because of our focus on agent usability, we opted not to have
a control group with no agent. We were not aiming to show that
using the CNL agent is better (or worse) than a manual pro-
cess, but rather that CNL is a usable medium for crowdsourced
knowledge collection and processing.

Group A participants were assigned to the confirm condition,
while Group B and Group C participants were assigned to the
ask–tell condition. Members of Groups B and C were shown that
they could ask questions of the agent in addition to confirming
CE. In our regression analysis (see Table III in Section V), group
and condition were analyzed because it was possible scoring
differences may be due to either factor.

Postexperiment, subjective usability was assessed by asking
participants to complete the system usability scale (SUS)11 and
a questionnaire to determine

1) their prior experience with NL search engines (e.g., Ap-
ple’s Siri or Google’s NL search);

2) their prior awareness of the game “Cluedo”/“Clue”;
3) the extent to which they shared information with others

(outside of the use of the app);
4) the extent to which they received information from others

(outside of using the app).

C. Sherlock Game

The game was designed to be played in a complex of univer-
sity buildings with which the participants were expected to be
generally familiar. Participants were given a sheet of paper list-
ing 54 questions. Note the questions had ground truth, a single
correct answer, unlike most prior social sensing research. Ques-
tions were designed to encourage participants to physically visit
locations around the building complex to discover the answers.
Participants were encouraged to use their own mobile device
(typically a smartphone or tablet) to access the conversational

11http://hell.meiert.org/core/pdf/sus.pdf

TABLE I
SUMMARY OF PARTICIPANT GROUPS, CONDITIONS, AND INSTRUCTIONS

agent and answer the questions in situ; they were also permitted
to use a device (tablet or desktop computer) provided in various
key locations. Users were randomly assigned to groups to min-
imize any difference in performance due to variations in device
functionality or user familiarity with the devices.

The participants were given a unique randomly assigned user-
name and instructed to use this to identify themselves to the
conversational agent. Participants were given 30 min to com-
plete as much of the task as possible. The farthest locations were
separated by no more than a 5-min walk.

Participants were instructed as shown in Table I. A prize was
offered to the highest scoring participant across the groups, that
is, the participant with the most assertions.

The two tasks were designed to simulate closed- and open-
ended tactical intelligence activities respectively, aimed at
collecting “who/what/where/why” information.12 Most of the
“who/what/where/why” elements centered on six characters
portrayed by human actors, one in each of six rooms referenced
in the participants’ questions. The majority of the 54 questions
in Task 1 referred to these six characters13—Reverend Green,
Colonel Mustard, Sergeant Peacock, Professor Plum, Captain
Scarlet, and Doctor White—and their distinct attributes, e.g.,
their shirt color, a particular kind of fruit in their possession,
their hobby, their employer, or their emotional state (e.g., sad).
Participants needed to physically visit and enter the six locations
to discover the character, their attributes, and any other objects
in the room. Some attributes such as shirt color and fruit could
be determined by observation; others such as hobbies or em-
ployers could only be determined by questioning the character.
Access to each location was restricted to a single participant at
a time, so participants could not confer on the room’s contents
while in situ. In case this might result in participants queuing to
access a busy location, the two tasks were designed to give them
plenty of alternative things to do instead of waiting. Example
questions included:

12The environment was considered static during each experiment run, so
“when” information was out of scope, an environment that changes over the
time of the experiment will be a feature of future work.

13Their names were based on the classic “Clue”/“Cluedo” game.
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TABLE II
FEATURES SCORING INDIVIDUAL POINTS

“Synthetic” features “Natural” features

Task 1 (closed) Features of the six
characters, including their
location, shirt color, fruit,

hobby, employer, emotional
state

Locations of specified
real-world objects (artworks

and artifacts)

Task 2 (open-ended) Locations of “anomaly
objects” (balloons, gorilla,

dinosaur)

Locations of “mundane
objects” such as office

equipment and furniture

What character eats bananas?
What character is wearing a red shirt?
What is the hobby of Professor Plum?
Who does Captain Scarlet work for?
Why is Colonel Mustard sad?
Where is the lemon?

To make Task 1 more challenging (mimicking real-world tac-
tical intelligence tasks), a minority of the 54 questions asked
participants to report the locations of distinctive real-world ob-
jects, such as artworks and artifacts, distributed in public areas
around the building. Example questions of this kind included:

Where in Queen’s Buildings is the
racing car?
Where in Queen’s Buildings is the
aeroplane wing?
Where in Queen’s Buildings is the
painting of Edmund Hann?
Where in Queen’s Buildings is the
Penydarren train plaque?

Anticipating that some of these public locations might be hard
for participants to describe to the agent, guidance was given as
to how to express them, for example, “South building stairs,”
“Central building second floor,” “North building lobby.”

Users could gain points for their assertions in Task 2 by
reporting the locations of a variety of “mundane objects” in-
cluding pieces of office equipment and furniture. In addition,
six “anomaly objects” were placed in or near the six character-
containing locations, intended to mimic suspicious objects in
real-world tactical intelligence tasks. None of these objects were
things conventionally found in the environment. These were: a
large heart-shaped balloon, a Mickey Mouse balloon, a 6-foot-
tall inflatable dinosaur, a 4-foot-wide inflatable soccer ball, a
large pink balloon in the shape of the numeral “6,” and a toy
gorilla. None of these were referred to explicitly in the set of
54 questions for Task 1. We were interested in the extent to
which participants in the different conditions would focus their
efforts on Task 1 versus Task 2, and the extent to which they
would report the “anomaly objects” in particular. Table II sum-
marizes the kinds of features and objects participants could gain
points for observing in each of the two tasks. Note that, while
the questions were designed to encourage participants to visit
locations in the buildings, in some cases, it was possible that a
participant might have known the location of one of the real-

Fig. 2. Shared dashboard summarizing a group’s performance on Task 1.

world objects, or might have been told an answer by another
participant. Neither of these cases would affect the goal of as-
sessing the usability of the conversational agent, however, only
the degree to which participants roamed the buildings.

The app dashboard visualizing the status of the shared KB
is shown in Fig. 2. The 54 squares correspond to the 54 ques-
tions in Task 1 (being open-ended, there was no simple way to
visualize participants’ progress on Task 2 beyond incrementing
their individual assertion score). The color of the grid square
corresponding to each question indicated the state of collected
information relevant to that question: gray (the starting state)
indicated that no information had yet been submitted by any par-
ticipant that answered the question; amber indicated that some
(consistent) information had been obtained, but not enough to
provide a “settled” answer to the question; green indicated that
enough information had been obtained to provide a “settled”
answer to the question; and red meant that the information ob-
tained indicated multiple conflicting answers to the question.
Heuristics were used to differentiate between amber, red, and
green states, aimed at encouraging participants to provide more
information to turn as many squares green as possible.

Participants were told that their group would be awarded ten
points for each question they collectively made green on the
dashboard.14

D. Summary of Sherlock Design for Tactical Intelligence
Relevance

Rather than aiming to fully recreate the real-world task,
simulation-based training and assessment should incorporate
psychologically relevant aspects from the real-world task and the
environment [28]. Consequently, the simplified task presented
here incorporates several key psychological characteristics of a
real-world tactical intelligence task:

1) Time pressure: Participants had a finite amount of time to
“complete” the task.

14Recall that Group A was roughly double the size of Groups B or C. Groups
B or C then may have had greater difficulty in moving a square from the amber
(“unsettled”) state than Group A did, and this had the potential to affect morale
and performance.
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2) Too much information and high uncertainty: The task
was intentionally designed to be impossible to complete.
There was ambiguity in locations and interactions with
the characters.

Moreover, the live network environment was a realistic
feature, exemplified by a server drop-out for Group A (see
Section V); although this was an unintended aspect, network
connectivity issues are common in military environments [27].

One could argue the experiment was confounded and the task
were oversimplified relative to real-world operational environ-
ments. However, if we were unable to establish effective use
of the conversational interface with a “simplified” experimental
design, it is extremely unlikely it would be effective under the
much more challenging conditions for military, law enforce-
ment, and others in safety critical real-world environments.

V. RESULTS AND DISCUSSION

The primary results were that the conversational agent had
high usability, supporting the first hypothesis that it would act
as an effective cognitive artifact. Results from the SUS
provide converging evidence. However, the second
hypothesis—that added speech act capabilities would in-
crease usability—was not supported; there was no meaningful
difference between the confirm and ask–tell conditions in terms
of individual scores or the number of reported anomalies.
Exploratory analyses of the secondary results provide insights
into the primary results. Finally, we discuss the tradeoffs and
limitations with the experimental design.

Time duration and reproducible research: Twenty-two min-
utes into the 30-min experiment, data collection for Group A was
affected by a server drop-out.15 To account for the server drop-
out, presented results were conservatively analyzed using the
first 22 min from all groups, unless noted otherwise. Critically,
results were comparable regardless whether or not the drop was
considered. Data and full results, including analyses with and
without the time cutoff, are available online: http://osf.io/pz529.
All results are fully reproducible.

A. Primary Results

Hypothesis 1: As explained in Section IV, usability was
assessed as objective performance [11], operationalized as
assertions (i.e., the successful performance of the operation
of adding information to the KB). Recall that individual
participants received one point for each assertion, that is, a
confirm interaction that ended in a submission of a piece of
CE to the agent, either in an attempt to answer one of the
54 questions (Task 1) or to report an object in the environment
(Task 2). An awarded point indicated that users had made
themselves understood to the agent and had made a contribution
to the collective KB relevant to the assigned tasks.

A histogram of participants’ total assertions from the three
groups is shown in Fig. 3: 29 out of 39 (74%) users had one point
or more; 2 out of 39 (5%) had only one point; 27 out of 39 (69%)

15The drop-out occurred 21 min and 47 s into the experiment; for brevity, we
will refer to this as 22 min.

Fig. 3. Histogram of participants’ total assertions from the three groups.

Fig. 4. Individual participants’ cumulative assertions for each group. Asser-
tions made after 22 min are shown dotted in gray.

Fig. 5. Mean assertions: (left) per group (Groups A, B, and C) and (right) per
condition (confirm condition, ask–tell condition), bars represent one standard
error of the mean.

had more than one point. Fig. 4 shows individual participants’
cumulative assertion counts during the periods of each group.
The trajectories generally show steady upward progression, with
a few cases of significant growth in the latter part of the run.16

These results provide evidence that the conversational ap-
proach can be effectively used with close to zero training: a
sizeable majority of users were able to become productive in
using the agent, that is, add to the KB, in a relatively short pe-
riod, operating in situ while attending to multiple simultaneous
information tasks.

Hypothesis 2: The mean assertions for each group
(Groups A, B, and C) are shown on the left of Fig. 5. The right
of the figure shows the mean assertions for each experimen-
tal condition; recall that participants in the confirm condition
used an agent equipped only with confirm conversational capa-
bility, while participants in the ask–tell condition used an agent

16The data for Group A are truncated due to the server drop-out near the end
of the period; the data for Group C indicate that some participants were able to
continue submitting data beyond the 30-min cutoff.
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TABLE III
REGRESSION ANALYSIS BY GROUP AND CONDITION

By group: initial θ = 0.92 (dispersion parameter)

Coefficients Estimate Standard Error z -value p-value

Intercept 1.59 0.26 6.09 < 0.001
Group B 0.02 0.46 0.05 0.96
Group C −0.35 0.44 −0.79 0.43

By condition: initial θ = 0.91 (dispersion parameter)

Coefficients Estimate Standard Error z -value p-value

Intercept 1.59 0.26 6.05 < 0.001
Ask–tell capability −0.17 0.37 −0.45 0.66

equipped with both ask–tell and confirm conversational capabil-
ities. Error bars represent one standard error of the mean. These
results show that the assertion totals did not differ significantly
by group or by condition.

In performing a regression analysis on the assertion counts,
counts were overdispersed, that is, the Poisson distribution as-
sumption of rate = variance was clearly violated [29]. Regres-
sions, therefore, used a negative binomial distribution, which
permits the rate and variance to differ. Another regression
method using a quasi-Poisson distribution, also recommended
for analyzing overdispersed data, produced similar results. A
summary of the analysis by both group and condition is shown
in Table III. The p-values indicate that the difference in partic-
ipants’ performance both by group and by condition were not
significant.17

Participants reported positive satisfaction based on scores
from the SUS. SUS results did not vary widely between the
three groups, with means in the high 60 s indicating a good
degree of usability. Detailed results from the accompanying
postexperiment questionnaire are not presented here for brevity.
The response rate was 57.5%.

In terms of the group scoring rule—ten points for each “set-
tled” question (i.e., green on the dashboard)—Groups A and B
each scored 80, while Group C scored 160. These are the end-
of-run scores seen by the participants on their dashboards, used
as the basis to reveal the highest group score, and do not reflect
the server drop-out experienced by Group A.

Anomaly objects were reported by a small number of partici-
pants (eight out of 39 participants reported one or more such ob-
jects), so results are only presented descriptively (see Fig. 6). In
most of the cases, the agent was able to properly interpret these
anomaly reports (i.e., inputs mentioning an anomaly object and
a location). However, in a few cases (five out of 14 messages),
we subsequently identified messages that were clearly intended
to be reports of an anomaly object but where the agent had
failed to interpret them satisfactorily; we counted these “failed”
reports along with the properly interpreted ones because we
were interested in the extent to which users apparently noticed
the anomaly objects. More anomaly objects were reported with
ask–tell than confirm. However, given the limited data, no strong
conclusions can be drawn.

17Data analyses were performed using R [30] and the lme4 package [31].

Fig. 6. Anomaly messages over time, denoted by “X.” Messages are super-
imposed over individual participants’ cumulative assertions. Note overlapping
“X”s were jittered to improve visibility.

Fig. 7. Proportion of user-submitted messages addressing Task 1 and Task 2.

1) Discussion: Most of the users (74%) were successful in
using the conversational agent, with accelerating assertions over
time indicating fast learning (see Fig. 4). We interpret this as
strong evidence that the conversational agent was a highly usable
cognitive artifact and is supported by converging results from
the usability questionnaire [11]. There were few reports of
anomaly objects (see Fig. 6). Without more data, we can only
infer that differences in speech act support by the agent had a
minimal impact on anomaly reporting in this experiment.

Because there were no meaningful differences among groups
or conditions, in terms of usability, the experiment provides no
evidence that the enhanced conversational capabilities of the
agent equipped with speech acts to support question-answering
either led to improved productivity in generating assertions
or any difference in participants’ attention to Task 1 versus
Task 2. The absence of a clear difference is explored next in the
secondary results, as are reasons for why users might have con-
centrated on Task 1—addressing the 54 (dashboard) questions—
rather than Task 2—objects in the environment. Possible rea-
sons why the ask–tell capability went largely unused are also
discussed.

B. Secondary Results

In the secondary results, graphical summaries of the messages
by group are presented in Figs. 7–9.

1) Fig. 7: Message proportions for Task 1 versus 2.
2) Fig. 8: Message counts: submitted, interpreted, and con-

firmed.
3) Fig. 9: Message proportions for a question versus a state-

ment.
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Fig. 8. Counts of messages submitted by the user, interpreted by the agent,
and confirmed by the user.

Fig. 9. Proportion of user-submitted statements and questions.

Overall, a high proportion of messages (93%) addressed
Task 1 not Task 2. Fig. 7 shows the proportions of submitted
messages that related to the various parallel activities groups
were tasked to: Tasks 1 and 2 refer to the instructions given to
the participants to 1) try to answer the 54 questions and 2) report
on objects in the environment not explicitly referred to in the
54 questions.

Across groups, 85% of submitted messages were interpreted
by the agent (see Fig. 8). The proportion of interpreted messages
confirmed by users was notably low (52%) (see Fig. 8); the most
common reasons for this are discussed below.

In Fig. 8, examples of “submitted,” “interpreted,” and “con-
firmed” are as follows. In the example interaction shown in
Fig. 1 in Section III:

1) “Submitted”: The user’s initial NL input, “Dr Finch is in
the gold room”;

2) “Interpreted”: The agent’s translation of this in to “the
character ‘Dr Finch’ is in the location ‘Gold Room”’ in-
dicates that this message was “interpreted”;

3) “Confirmed”: The user’s subsequent confirmation of the
CE would count this as a “confirmed” message.

The vast majority of messages (95%) were statements rather
than questions.

Fig. 9 classifies submissions into whether they were state-
ments of fact, intended to impart information (e.g., to answer
one of the 54 questions or to report an object in the environ-
ment), or whether they were “questions” addressed to the agent.
Recalling that the Group A members, in the confirm condition,
were given an agent that was incapable of responding to ques-
tions, it is interesting to see that a few attempts were made to
query it regardless. More interestingly, it is evident that mem-
bers of the ask–tell condition groups did not make extensive use
of their agent’s query capability, particularly in Group C.

1) Discussion: Overall, participants focused their efforts
overwhelmingly on Task 1 (answering the 54 questions), with
only Group B making non-minimal efforts to address Task 2 (re-
porting objects in the environment). There are several comple-
mentary explanations for this emphasis on Task 1: First, Task 1
was more “visible” to participants due to the question sheet
and the prominence of the dashboard (which showed progress
on Task 1 only). Second, Task 2 may have been seen as having
lower value than Task 1 because it did not contribute to the group
score (which was based on the number of “green” questions on
the dashboard). Third, Task 1 was closed, whereas Task 2 was
open, potentially leading participants to focus on a task they felt
they could complete.

There are also several complementary reasons to explain why
members of the ask–tell condition groups did not make ex-
tensive use of their agent’s query capability. First, the scope of
Task 1 was large enough that participants could continue to make
progress in “lighting up the dashboard” without needing to use
their agent’s query capability. Second, the query capability had
the most value for helping resolve conflicted questions. With
so many questions remaining in an uncertain state throughout
the experiment, it seems participants likely perceived that they
had “more than enough to do.” Consequently, it is feasible that
increasing the duration of each run and/or reducing the number
of questions would have led to greater use of the agent’s query
capability because greater efforts would have been allocated to
resolving conflicted questions.

Other exploratory results indicated that the majority of sub-
mitted messages were interpreted by the agent, although a lower
number were confirmed. In many cases, this was due to the
agent’s failure to properly interpret users’ attempts to describe
the locations of real-world objects. In other cases, it was due
to the agent not recognizing named entities that we had not
anticipated users mentioning, e.g., the real names of the ac-
tors playing the characters. In some cases, however, it appears
that many users simply forgot to confirm the agent’s perfectly
accurate interpretations of their input.

C. Observations

Actors playing the six characters were able to observe that
there was some degree of organisation within groups to the
extent that particular users tended to visit the same locations
together and take turns to enter the designated rooms, or to send
one individual in, who would then gather information and report
it directly to the others. This was borne out in patterns of mes-
sage submission. Other expected submission patterns included
repeated attempts to be understood by the agent, in some cases
mimicking CNL styles apparently in an effort for their input to
be properly processed.

As noted above, participants encountered particular difficul-
ties in communicating the locations of real-world and anomaly
objects leading to some frustration in both Tasks 1 and 2. In
some cases, users were unable to work out how to provide input
that resulted in CNL (messages “submitted but not interpreted”
in terms of Fig. 8); in other cases, the agent generated CNL that
the user opted not to confirm (“interpreted but not confirmed”).
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These cases caused many of the real-world object questions to
remain gray or amber on the dashboard. In other cases, users
provided conflicting descriptions of a location, resulting in red
squares on the dashboard. The following are examples of a
participant struggling to describe a location (expected answer:
South building ground floor):

The aeroplane wing is in the basement
The aeroplane wing is in the workshop
The aeroplane wing is in p980

D. Tradeoffs and Limitations

This research has several tradeoffs and limitations, many
because the SHERLOCK experiment used an open, uncertain, real-
world environment, and a nonexperimental design for usability.
While we demonstrated that the agent is usable, a methodologi-
cal limitation of the nonexperimental design is no experimental
comparison to another system or a control condition. Additional
shortcomings include: different group sizes, informal informa-
tion sharing among users (users directly communicating with
each other), server drop out, ambiguity in location and character
interactions, knowledge of the environment, and use of personal
devices. Although some of these limitations were intentional,
others were not. Minimizing potential confounds, especially
unintended ones, in future research will increase internal
validity.

Moreover, we used a sample of convenience, and this sample
was small at the group level but more than sufficient at the indi-
vidual level because of repeated measures over time. The total
number of input messages with the conversational interfaces
was 558, a mean of 14.31 (558/39) per participant.

Few anomalies were reported. However, by definition,
anomalies are rare or unusual, which was our intention. Making
them easier to find and/or providing explicit incentives for re-
porting them would substantially change the task. Nevertheless,
this is a limitation of the design.

As noted above, some users exhibited confusion in naming
the real-world locations in Task 1 or referenced entities outside
the scope of the game. This would not have been an issue had
we chosen to use a list of predetermined, selectable entities,
and locations in the agent. However, specifying this informa-
tion would have turned the experiment into more of a matching
task than using a conversational agent. Furthermore, it is not
always possible to provide, in advance, all objects and locations
of potential interest in the real world. These tradeoffs may ac-
count for the (self-reported) degree of frustration among a small
number of the participants. Enhancements to the agent for deci-
phering location names would help mitigate this issue. Finally,
minor user interface changes to confirmation (e.g., a reminder to
confirm and/or autoconfirmation after a small amount of time)
are highly likely to substantially increase confirmations.

In addition, a few participants confused the characters with
the actors playing them, using their real-world names and affil-
iations rather than the character ones. This could be addressed
with stronger clarification in the instructions or by replacing
human actors with synthetic characters (e.g., cartoon scenes
depicted on posters).

Last, the time and effort to run the experiment (seven ex-
perimenters, with substantial setup time) in the real world was
nontrivial. There was a tradeoff by conducting the research in a
real-world environment rather than a more controlled laboratory
environment. It is possible that participant performance would
have been much higher with a well-controlled “clean” labora-
tory experiment, but the greater internal validity would likely
have come at expense to external validity. While the server drop-
out for group A was an unintended confound, it is a common
occurrence in the real world and did not meaningfully impact
the results.

VI. CONCLUSION AND FUTURE WORK

Results from the SHERLOCK experiment provide evidence that
untrained users were able to become productive in a short time
using the conversational agent to provide information on a situ-
ation. The experiment was unable to confirm whether the more
sophisticated question-answering capability is helpful as this ca-
pability was used only to a very limited extent by participants,
most likely due to time pressures of the task. Also, the design of
the task provided little incentive for users to use the capability.
We will address this in the design of future experiments.

Feedback from the agent to the user in the experiment was
confined to the use of CE in confirm interactions. An area for
future experimentation would be to compare this with more “nat-
ural” forms of feedback (e.g., textual or spoken NL, or graphical
feedback as was explored briefly in [26]). Further experiments
will examine wider styles of conversation, general usability of
the CE form of CNL, ability to quickly model or extend a model
in a domain, multiuser conversations, and potentially also con-
versations with multiple different NLs—particularly important
in coalition operations.

In terms of the practical functionality of the conversational
agent, a key future objective is to extend the agent so that it is
able to acquire input from more sources, e.g., audio/image/video
input from the mobile device, metadata such as the device
type/model, spatial and temporal data, and potentially even cues
as to its user’s emotional state. For example, the system could
be extended to support crowdsourcing via social media by hav-
ing the conversational agent operating behind a Twitter account
so that it could, for example, use Twitter to collect information
(either from public accounts or by asking) or disseminate that
information by retweeting.

Finally, the use of CNL to support machine–machine as well
as human–machine conversations is highly applicable to the
Internet of Things (IoT) context [32]. IoT is networked “smart”
physical devices with software and sensors that are typically
both automated and user controlled. In particular, CNL enables
a common representation for machine–machine interactions that
is also amenable to human understanding. We plan to conduct
future experiments in the IoT context.
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