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Abstract—Effective coalition operations require support for
dynamic information gathering, processing, and sharing at the
network edge for Collective Situation Understanding (CSU). To
enhance CSU and leverage the combined strengths of humans and
machines, we propose a conversational interface using Controlled
Natural Language (CNL), which is both human readable and
machine processable, for shared information representation. We
hypothesize that this approach facilitates rapid CSU when as-
sembled dynamically with machine assistance, via social sensing,
from local observations, with information rapidly disseminated
among people at the network edge. We report a behavioural
experiment wherein small groups of users attempted to build
CSU via social sensing, interacting with the machine via Natural
Language (NL) and CNL. To simulate a tactical environment,
participants answered 36 questions (operationalized as CSU) by
visiting various locations and describing their discoveries to a
mobile conversational agent. To test our hypothesis, we compared
the performance of groups of users between the:

1) Online Condition: CSU, the status of all questions, dynam-

ically updated by the machine as users collect information.

2) Offline Condition: No dynamic machine-supported CSU,

simulating unreliable connectivity at the edge. Each par-

ticipant was restricted to their own information until the

end of the experiment.
Results indicated the Online Condition had greater agreement
in CSU, but individual participants answered significantly fewer
questions than the Offline Condition. In other words, the Offline
Condition group provided more answers, but there was more
consistency among the answers provided by the Online Condition
group.

Index Terms—collective situational understanding; controlled
natural language; conversational interface; human-machine in-
teraction, groups

I. INTRODUCTION

Over the past four years we have been researching technolo-
gies to support human-machine collaboration in the context of
coalition intelligence, surveillance, and reconnaissance (ISR)
tasks [1]. We have focused on approaches using Controlled
Natural Language (CNL) [2] to provide representations of
information and knowledge that are human readable and
writable, as well as machine-processable. Such approaches
allow the machine to perform computational reasoning over
a knowledge base while expressing rationale that is human-
understandable. The overall goal of this research is to use
human-machine collaboration, also called Human Computer
Collaboration (HCC), to enhance human cognition.

Our recent focus has been on behavioural research to test the
effectiveness of the technology for people using simulated ISR
tasks, specifically in the context of Collective Situation Under-
standing (CSU). To this end, we have designed a platform for
running a series of experiments in which human participants
work alone or collectively on gathering synthetic and natural
information either in situ or online. Participants address CSU
tasks by interacting with a CNL agent through dialogues in
which they can use both Natural Langauge (NL) and CNL. The
tasks involve the collection of locally observed information,
such as simulating activities humans would perform on patrol
or while operating a remote sensing system.

Tasks in these experiments are simplified to allow partic-
ipation without any specific ISR training and to ease some
aspects of the NLP performed by the agent. This was done
because NLP was not the focus of the current work. NLP is
“...computational techniques for the automatic analysis and
representation of human language” [3, p.48]. In prior research,
we have demonstrated that with minimal training most people
could effectively use variants of the conversational interface in
simulated tactical intelligence tasks with imagery [4] and in a
real-world environment [5]. We hypothesize that the approach
with the conversational agent facilitates rapid CSU when
assembled dynamically with machine assistance, via social
sensing, from local observations, with information rapidly
disseminated among people at the network edge.

In this paper, we report a behavioural experiment wherein
small groups of users attempted to build CSU via social
sensing, interacting with the machine via NL and CNL. To
simulate a tactical environment, participants answered 36
questions (operationalized as CSU) by visiting posters hung
in various locations in a building complex and describing
their discoveries to a mobile conversational agent. To test our
hypothesis, we compared the performance of groups of users
between the:

1) Online Condition: CSU, the status of all questions, was
dynamically updated by the machine as users collected
information. This information was presented in a dash-
board, which served as a real-time common operating
picture (COP). A COP is a unified display of relevant
information shared shared by one or more users.

2) Offline Condition: No dynamic machine-supported CSU,



simulating unreliable connectivity at the edge. Each
participant was restricted to their own information until
the end of the experiment.

The experiment uses novel technology for CSU: a decen-
tralised platform for knowledge capture and sharing based on
NL and CNL, called CENode (Controlled English Node)'.
Being decentralised makes CENode robust in settings where
network connectivity is limited or unreliable: users are able to
work offline with local knowledge bases, sharing information
when connectivity is available. While the primary goal of the
work was to compare the CSU performance of human teams
in the Online and Offline Conditions, a secondary goal was
to test the effectiveness of the CENode software in enabling
CSU at the network edge, which we refer to as Edge CSU.

This paper is structured as follows: Section II establishes the
context of our research in terms of related work; Section III
introduces the CENode platform and the capabilities of the
CNL agent built using CENode for the experiment; Section IV
details the experiment design; Section V provides analysis of
the results; finally, Section VI concludes the paper and points
to future work.

II. RELATED WORK

Networked Enabled Operations allow rapid information
sharing and communication, making it possible to have de-
centralized or edge groups, teams, and organisations rather
than hierarchical ones [6], [7]. Edge Command and Control
(C2) is characterised by enriched peer-to-peer interactions such
as horizontal exchanges and interactions with peer contribut-
ing partners in a coalition, where the resulting increases in
information sharing improve the quality and accessibility of
available intelligence [8].

Edge C2 has well-known limits and even detriments to
group performance. For example, as group size increases
the potential for loss of motivation increases [9]. Also, the
number of communication links in a fully connected network
increases exponentially as a function of group size: n(n—1)/2
where n = number of individuals [10], making complete
connectivity difficult and expensive to maintain as networks
grow. Finally, more information, even if task relevant, can
impair human decision-making [11]. A key motivation for
human-computer collaboration in this context is to ameliorate
these negative effects, where machine affordances in data
manipulation can reduce cognitive burdens on humans [12].
Consequently, we sought to minimize human efforts for lower
levels of information fusion (i.e., information pre-processing
and refinement) so users could focus on high-level inferences
to improve effectiveness [13]. In our work, the group members
are assisted in CSU tasks by agents performing information
fusion and simple visualisations that indicate where informa-
tion is currently lacking, while also managing communication
in order to avoid the ‘cost’ of links as group size grows.

Understanding phenomena in CSU requires multiple levels
of analysis [14]. For example, groups comprise a lower level
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of analysis: individuals. Knowing how individuals behave does
not necessarily fully inform how the group behaves and vice-
versa [15]. Consequently, we examined group performance
for information quality using CSU and information quantity
using total messages. Individual performance for information
quantity was assessed using the quantity of messages each
person in each group added to the knowledge base.

Our conversational approach using NL and CNL is intended
support HCC where natural communication, shared represen-
tation and manipulation of knowledge and problem-solving
entities, and balanced representation and reasoning between
human and machine are key principles [16].

III. APPROACH TO SUPPORTING EDGE CSU

Our approach to supporting CSU at the network edge is
founded on the use of a CNL as a means to define information
models as well as structured instance data. Model and in-
stance elements collectively form a knowledge base. The CNL
used in this work is International Technology Alliance (ITA)
Controlled English (CE) [17], which offers approximately the
same expressivity in terms of information modelling as the
Web Ontology Language (OWL) [18]. Model elements and
instance data are defined via CE sentences. For example, the
first sentence below defines the model concept character
as a child concept of the parent concept locatable thing.
This definition allows instances of character to inherit a
relationship is in that associates instances of locatable
thing with instances of the location concept. The second
example sentence below is a piece of instance data asserting
that a specific instance of character (named ‘Dr Finch’) is
associated with a specific instance of location (named ‘Gold
Room”).

conceptualise a 7 character 7 C that is a

locatable thing.

the character ’'"Dr Finch’ is in the location

"Gold Room’.

CENode is a lightweight CE processing environment im-
plemented in JavaScript so as to be easily deployable in a
variety of contexts, including web browsers, mobile apps, and
servers’. CENode is lightweight in the sense that it does
not aim to be a fully fledged CE engine — for example,
offering only limited inference and NL processing — and
requires relatively little network bandwidth to download and
operate. Once loaded, a CENode instance can function inde-
pendently without any network connection, maintaining a local
knowledge base (KB) and communicating with other CENode
instances only when connectivity is available, via the CE Card
conversational protocol [19] and blackboard mechanism. This
makes it well-suited to deployments at the network edge,
and in settings where a centralised client-server model is not
the most appropriate configuration. (In centralised settings,
the CE Store [20] offers a far richer set of CE knowledge
representation and reasoning capabilities.)

2For example, via Node.js: https://nodejs.org
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CENode instances can either be run independently or as part
of a multi-node system. In a multi-node system, at least one
of the nodes needs to be run as a service (e.g., via Node.js).
All CENode instances in a multi-node system are, by default,
equal in terms of functionality and behaviour. This is the case
even if each node is deployed in a different way (e.g., some
nodes may be running as a service, some as a web application,
and some as a programmatic JavaScript application). Providing
information to (and retrieving information from) a node is
always done via CE. Using CE as the only means of com-
munication enables support for distributed systems including
humans, CENode agents, and a CE Store.

CENode is intended to offer a number of key benefits in an
edge CSU setting:

o Users have access to, and can interact with, a CENode
agent directly on their device. Any CE provided to the
agent can be parsed locally and any local knowledge
stored can later be relayed (‘told’) to other agents once
a network connection is (re)established.

o Because the local node is a CE processing environment,
features such as CE ‘autocorrect” and ‘spellchecking’ can
be provided at no bandwidth cost and in the absence of
a network connection. The local agent can quickly check
the validity of any CE as it is being typed in order to guide
the user towards inputting correct CE and also giving
insight into the concepts and instances stored in the local
CE model.

o Local NL processing of input means that only validated
CE is transmitted between nodes, at a saving of band-
width and time.

o Instead of relying on a single CE Store server with a
centralised knowledge base, CENode supports a network
of peers with different local knowledge base variants.
This is particularly important in a coalition context where
different partners may hold different knowledge.

The CNL grammar understood by CENode has been ex-
tended from standard ITA CE, supporting various ‘shorthands’
for easier input and querying of information to and from the
KB. Input made in this way (as with the NL processing) can
be guided by the node’s own KB, and predictions for intended
sentences can be provided. Whilst not standard CE, CENode’s
understanding of the grammar means that the following types
of sentences can safely be sent within CE cards to a CENode
agent. For example, the CE instance sentence above can more
concisely be written:

Dr Finch is in the location ’Gold Room’.

Another useful ‘shorthand’ is the ability to ask questions
to provide users and agents with the ability to make
who/what/where queries of the node’s KB. As well as
supporting questions such as ‘What is a character?’, “What
is the Gold Room?’, and ‘Where is Dr Finch?’ the interface
can be used to query about relationships and properties. For
example, the query what is ’is in’?
results in the response:

(1 Parse & add card] H CE
CE B : | or Finch is
: ead car D[ in the
Agent CE Card ZRead el enode

- : location
there is a | @ CE . | "Gold Room'. CE
tell card KB :

named Agent

‘msg4’ that
has...

[3 Update KB)

: [1 Update KB]

Fig. 1. Manipulating a node’s KB - left: through cards; right: directly.

"is in’ describes the relationship between a

locatable thing and a location.

A. Manipulating a CENode Knowledge Base

Each CENode comprises a KB and a local CE agent that
maintains the KB, shown in Figure 1. A CENode will try to
process and update its KB when any CE is received. As with
the CE Store, CENode instances also support the blackboard
architecture, which enables users and agents to submit CE
sentences wrapped in CE Cards that are addressed to the local
agent. If a card addressed to the agent is received, then the
agent can find the card and read it. If the card contains valid
CE, then the agent can then use this to modify its KB. If the
card is not addressed to the local agent, then it will remain in
the KB unread. The addressee node may eventually find this
card as a result of policies (see Section III-B).

For example (illustrated by Figure 1), assuming a node’s
local agent is named agent1, the following two sentences
received by the node would have equal effect:

there is a tell card named ’'msg4’ that is to
the agent ’agentl’ and has "Dr Finch is in
the location ’Gold Room’." as content.

Dr Finch is in the location ’'Gold Room’.

The CE agents identified in Figure 1 represent any entity
that is able to emit CE and communicate with the node.
These might be human agents inputting information through
a text messaging interface, or machine agents which are
communicating with the node as a result of policies (see
Section III-B). CENode provides RESTful and programmatic
APIs for supplying CE. The APIs are exposed to JavaScript
applications (e.g., within web apps or Node.js applications)
and the RESTful endpoints are exposed when CENode is run
as a web service (e.g., again via Node.js).

B. Agents and Policies

Each CENode instance includes a local agent (see Figure 1),
which is normally responsible for updating the local KB when
cards are received. Agents in multi-agent setups are also able
to send cards with respect to policies. Policies are instructions,
written in CE, that, when applied to a node, may cause the
local agent to try and communicate with another agent.

For example, consider a tell policy, which instructs the agent
to forward any zell cards received on to another target agent
and is useful for propagating information through a network
of node instances:

there is a tell policy named ’'pl’ that targets



Welcome to
THE EMERALD ROOM!

Fig. 2. Sample poster design (left), shown in situ (right).

the agent ’agent2’.

Other policy types include a listen policy (for retrieving
cards from other agents) and a feedback policy (for governance
over responses provided to received cards).

If policies are active on an agent, but there is no network
route to other nodes, then the local node will still function
as normal in the meantime, but will attempt to re-establish
connections with other nodes once a network becomes avail-
able. Combining policies in different ways allows for the
deployment of various network topologies of nodes that might
be useful in different coalition settings.

IV. EXPERIMENT METHOD

The goal of the experiment was to compare the ability
of small groups performing CSU tasks at the network edge
under different connectivity conditions; specifically, to com-
pare performance between groups (i) with ‘good’ connectivity
allowing real-time sharing of the COP, and (ii) with no
connectivity outside the environs of the base location allowing
sharing of the collective picture only when the group returns to
base at the end of their experiment run. A physical rather than
virtual environment was chosen for the experiment in order
to gather performance data on the operation of a network
of CENode instances running in situ, as well as to provide
a richer and more immersive setting for the participants,
with human-human as well as human-machine collaboration
opportunities. Participants were tasked to explore a set of
given locations in a building complex and use mobile devices
running CENode agents to capture information that the agents
would use to assemble a COP in the form of a shared CE KB.

The situation was entirely synthetic, with elements depicted
in a set of 16 stylised posters distributed in the vicinities of
six given locations. The participants were tasked to provide
essential elements of information (EEOIs) on six persons of
interest (POIs): their location, the colour of their shirt, what
sport they play, and what fruit they eat. Each poster depicted 2
or 3 EEOIs. An example is shown in Figure 2. Here, the POI
Rev Hawk is shown located in the Emerald Room, wearing a
red shirt, and with a pear (3 EEOIs). Participants were given a
set of ‘mugshots’ of the POIs so they could recognise them on

the posters, and they were tasked with answering 36 questions,
such as:

What character eats pears?

What character is in the Emerald Room?
What character is wearing a red shirt?
What fruit does Rev Hawk eat?

Where is the pear?

Note that in some cases, the answer to a question can be
inferred from the answer to another question. Such inferences
are performed automatically by the CE agents as part of
their task in assembling the COP. Given that our research
focus is not on NLP, the elements of the synthetic situation
were designed to be easily recognised and relatively easily
described by users to the CE agent, with distinct shirt colours
(black, white, red, green, blue, yellow), items of fruit (apple,
banana, lemon, pear, orange, pineapple), and sports (baseball,
cricket, golf, rugby, soccer, tennis). The experiment runs
were conducted in the UK so some cultural background was
assumed (recognisability of a rugby ball and cricket bat, for
example) though there was potential for ambiguity in that
‘football’ is often used in the UK in preference to ‘soccer’,
and the British game ‘rounders’ uses the same type of bat as
baseball. Further potential for ambiguity existed in the fact
that some of the characters looked superficially similar.

Participants used their own mobile devices to run instances
of the CENode-based conversational agent, typically smart-
phones; an option was provided for them to use a tablet
or PC at the base location if they experienced technical
problems with running the agent, though a negligible number
of participants took up this option. A full description of the
capabilities of the agent is given in [19]. The core capabilities
support (i) information capture where the user provides NL
text input which the agent ‘confirms’ in CE and (ii) question
answering of simple who/what/where queries. Figure 3 shows
a screenshot from the agent. The conversation between the user
(blue messages) and the agent (grey messages) is rendered as a
conventional mobile app text message thread. The user’s input
(‘Rev Hawk plays baseball’) is in NL, which the agent maps
to CE via simple NLP. The user can either confirm that the
CE is an acceptable interpretation of his or her input (shown
as the ‘Yes’ message here) or reject the agent’s interpretation
and try again. The user is permitted to enter the same piece
of information only once. The user can also ask the agent
questions, as shown in the bottommost message. The agent
will use the current contents of its KB to try to answer the
question (in this case, it has no information).

The top-left button on the agent user interface allows the
user to view a ‘dashboard’ showing the current status of the
COP in terms of the 36 questions. An example is shown
in Figure 4. The meaning of the colours was explained to
participants as follows:



i 6 points

Rev Hawk plays baseball

OK. Is this what you meant?

the character 'Rev Hawk' plays
the sport 'baseball’

Yes.

the character '‘Rev Hawk' plays
the sport 'baseball’

Where is Sgt Stork?

| don't know where Sgt Stork is.

Input suggestions

Fig. 3. Conversational agent user interface.

Fig. 4. Conversational agent dashboard display.

Grey No information received to answer this question

Amber  Some information received, but insufficient to
give a conclusive answer to this question

Green  Sufficient information received to give a con-
clusive answer to this question

Red Conflicting information received in answer to

this question

The indicator in the top-right corner of the agent user
interface indicates whether the user’s agent is currently online
(green) or offline (grey). This is under the control of the
experimenters, as explained below.

A. Experimental Design and Hypotheses

The experiment used a single factor, two-level between-
participants design. In the Online Condition, the group mem-
bers were given access to a conversational agent with full

network connectivity, able to exchange collected information
with all other participants’ agents in real time using tell and
listen policies as described in Section III-B. In the Offline
Condition, the group members were given access to a ver-
sion of the conversational agent with information exchange
disabled until the end of the experiment run. The meaning
of the indicator in the top-right of the agent user interface
was explained to participants, making clear to participants in
the Offline Condition that their indicator would remain grey
until the end of the run (for Online participants, the indicator
would reflect their actual network connectivity at any time
during the run). The meaning of the dashboard display was
also explained, highlighting the following:

e Online Condition: the dashboard would update in real
time to show the current collective state of the COP in
terms of information submitted by all group members.

« Offline Condition: the dashboard would reflect only the
information submitted by the individual user (because no
information would be exchanged) until the end of the
run. Therefore, every square on the grid would be grey or
amber depending on whether the individual had submitted
any answers to that question. At the end, connectivity
would be enabled and the dashboard would update to
show the collective state for the group as for the Online
Condition.

Participants were drawn from a sample of convenience: they
were first and second year UK undergraduate students studying
computer science. They had no prior knowledge of CE. The
experiment was run over two days, with two groups on the
first day and two on the second:

Group Condition Participants
A Online 30 1st year undergraduates
B Offline 15 1st year undergraduates
C Online 13 2nd year undergraduates
D Offline 8 2nd year undergraduates

The posters were distributed around the building complex as
shown in Figure 5. The layout of the buildings was generally
familiar to the participants. They were given an instruction
sheet with the 36 questions, ‘mugshots’ of the six POls,
locations of the six ‘room’ posters (Amber Room, Emerald
Room, Gold Room, Ruby Room, Sapphire Room, Silver
Room) and told that the location of other posters needed to
be discovered in the vicinities of the ‘rooms’.

Prior to the experiment, participants were given a 10 minute
briefing on the CSU task and the use of the conversational
agent, but were given no opportunity to practice using the
agent before participating in the experiment. A summary of
the instructions for use of the agent was also on their sheet.
Each group was briefed separately and each pair of groups
(A/B, C/D) was told that they were in competition. Participants
were instructed: “Your group is in competition with the other
group for the highest group score. Your group gets one point
for each answer you get to green on the dashboard.”
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Fig. 5. Map showing approximate locations of the characters and objects
(Groups A and B).

Following the briefing, groups were given 40 minutes to
perform their task and instructed to return to the starting
location at the end, where they were given a short debrief
on their performance and the final state of their dashboard. In
the case of the Offline Condition groups, this debriefing was
the first time they were able to see the collective state of the
dashboard, as connectivity was enabled for their agents at that
point. After each pair of runs (A/B, C/D), all participants were
told the final scores for both groups, and the winning group
was revealed.

The primary hypothesis was that the Online Condition
participants would build a more ‘settled” CSU picture as
measured by a greater proportion of ‘green questions’ than the
Offline Condition participants, because the real-time connected
status of these participants would allow them to collectively
identify and focus their efforts on parts of the COP that
required more information (grey or amber) or a higher degree
of consistency (red).

V. EXPERIMENT RESULTS

The experimenters recorded the following qualitative obser-
vations on the four runs:

o Group A was very noticeably more energetic than the
other three, being faster to mobilise in leaving the starting
location.

o Members of all four groups worked in sub-groups to some
extent, with few apparently working entirely alone. Sub-
groups followed different routes around the buildings.

o Some members of Group C seemed to be foraging for
information and reporting back to friends who stayed in
the starting location.

o Although there was no intention on the part of the
designers to have any hidden meaning in the scenes
depicted in the posters, nevertheless some participants
believed that some of the POI names (e.g. ‘Capt Falcon’,
‘Prof Crane’) were references to characters in popular
culture and therefore clues to some hidden situation.

o It was clear from observation of participants’ behaviour
in the Online Condition that they were trying to turn red
squares to green by working collectively (each individual
could only answer each question once so they were
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Fig. 6. Dashboard development over time for cumulative question status;
colours correspond to definitions provided in Section IV

reliant on colleagues to provide additional corroborating
information in order to resolve inconsistencies).

e Some participants in Group D (Offline Condition) at-
tempted to supply further information after the dashboard
was revealed!

e There was an example of groupthink with Group D: over
half the members returned to the starting location shortly
after leaving, to seek clarification on how to answer the
questions. It seemed that a few dominant group members
had taken a view on how to interact with the agent and,
when their approach hadn’t worked, they all returned to
the starting location to see the briefing note again rather
than try alternatives.

During the runs, each participant’s conversational agent
logged all cards generated, including the NL input from
the user, confirmatory messages from the agent to the user,
confirmed CE added to the KB, and any queries input by the
user. Figure 6 shows a reconstruction of the progression of
the dashboard for each of the groups, based on the logged
cards. Reconstruction of the global state of the dashboard was
necessary because this state did not exist at run-time. In the
Online Condition, each participant only sees their local view
of the dashboard which, due to distributed system effects such
as intermittent network connectivity or delays in information
sharing, may not be identical to other participants. In the
Offline Condition, the state of the dashboard is computed only
when participants come online at the end.

The visualisations show a period of 50 minutes, starting
approximately 5 minutes before the start of each 40-minute
run, and ending approximately 5 minutes after the end of



the run. The x-axis shows time and the y-axis shows the
cumulative question status. Each run of the experiment starts
with all questions grey (no information). Then question status
begins to shifts to amber (some information), occasionally red
(conflicting information), with green (sufficient information)
growing over time.

A. CSU Results: Group Information Quality

In terms of group scores, Group B was the only group
to achieve a fully settled set of 36 questions. Group A
settled all but question 36 which was: ‘What sport does Capt
Falcon play?’ and answers conflicted because some players
used the name ‘soccer’ while others used ‘football’. It was
evident from observation that members of Group A were
aware of this issue and were trying to coordinate their efforts
to resolve this conflict, but were not able to do so. In fact,
additional information received between minutes 40 and 41
in Figure 6(a) meant that the state of the KB with respect to
question 36 became conflicted again. It is worth noting that
participants were not told the internal rules that the agents used
to determine which state to display on the dashboard. Where
multiple conflicting answers were submitted for a question
(e.g. ‘soccer’ vs. ‘football’) the green/red state was determined
by counting the frequency of all submitted answers. If the
count for the most frequently submitted answer was at least 3
higher than the count for the next most frequently submitted
answer, the dashboard square for that question would be shown
as green; otherwise it would be red. For example, 6 users
answering ‘soccer’ and 3 users answering ‘football’ would
result in green, while 6 users answering ‘soccer’ and 4 users
answering ‘football’ would result in red.

The smaller groups, C and D achieved a less settled state
overall, with more questions still in the amber and red states
at the end, particularly for Group D. The Offline Groups,
B and D, had more questions in the red state during play
— participants of course were unaware of this since their
individual responses were not aggregated until connectivity
was enabled at the end.

These visualisations suggest that:

e The Online Condition groups maintained a more settled
picture during the runs though did not markedly outper-
form the Offline Condition groups.

o The larger groups (A/B) achieved a more settled picture
more rapidly than the smaller groups (C/D).

B. CSU Results: Group Information Quantity

Figure 7 reveals differences between the groups in terms
of the mean number of assertions — statements added to
the KB — made by the participants. Scores were analysed
using separate binomial regressions. There was a significant
difference between Groups A and B (p < 0.001) but not
between C and D (p = 0.30). The likely explanation for
this difference is participants in the Online Condition, being
aware of the current state of the COP in terms of the real-
time dashboard updates, reduced their efforts in the latter
part of the run once the dashboard was predominately green.

Assertions
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Fig. 7. Mean participant assertions. Error bars represent one standard error
of the mean. Note the y-axes differ.

Participants in the Offline Condition, being unaware only of
the state of their individual dashboard, continued to make
assertions until their dashboard was predominantly amber. One
member of Group A commented afterwards that members of
their group had realised that, once a question was settled and
the dashboard showed it was green, it was counterproductive
to continue making assertions in relation to that question as
to do so risked introducing conflict in the collective KB and
turning the dashboard red for that question.

To quantify the magnitude and confidence intervals for the
effect sizes between the Online and Offline Conditions, a meta-
analytic approach was used [21], see Figure 8. Note the very
large effect size for Groups A/B (Pseudo-R? = 0.62) and, in
contrast, the almost medium effect size, albeit with a wide
confidence interval, for C/D (Pseudo-R? = 0.08). The overall,
pooled effect size was large (Pseudo-R? = 0.53). That is, 53%
of the variance in assertions can be explained by the online
versus offline manipulation.

The effect size was calculated using a linear model for the
correlation between the actual and fitted values [22]. This is
denoted here with Pseudo-R?. Pseudo-R?s provide an effect
size estimate for non-linear and other complex models which
do not otherwise have an measure of absolute fit, see [23]. For
Groups A/B and C/D, the confidence intervals for the Pseudo-
R?s were determined using a quantile bootstrap, a robust
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Fig. 8. Forest plot of effect sizes for online vs. offline assertions with
bootstrapped 95% confidence intervals. The pooled effect combines A/B and
C/D.

random resampling method for parameter estimation [24]. The
pooled effect size was calculated by combining these two
effects, weighted by the number of participants [25].

Examining the cumulative progression of individual num-
bers of assertions during the runs in Figure 9 we see a
markedly higher reach in Group B compared to Group A,
suggesting again that members of Group A reduced their effort
in the latter stages of the game as their dashboard became
predominately green.

The lesser difference in individual performance between
Groups C and D is likely due to the smaller group size
and the fact that it took them longer to achieve settled
(collective or individual) states than the larger groups.
Looking at histograms of the individual performance in terms
of assertions between Groups A/B and C/D, Figure 10, we
see that members of the offline groups appeared to ‘work
harder’ with a frequency shift to higher numbers of individual
assertions. This is corroborated by the number of messages
each group submitted: the number of messages submitted per
person in the Offline Condition is nearly double that of the
Online Condition.

Online Offline
N =43 N =23
Total messages 1031 1040
Average messages per participant 24.0 45.2

Figure 11 shows the volume of cards generated in the system
based on the logged data during each of the four runs as a
measure of group activity. The volumes show reducing activity
in the Online Condition groups in the latter stages. Comparing
Groups A and B, we see activity in Group A reduces from
around the halfway point (20 min into the run) whereas the
reduction occurs only in the final 5 minute period for Group C
compared to Group D. The results for Group D in particular
is sensitive to the performance of specific individuals as this
group was the smallest.

Results are fully reproducible. The data, analyses, and
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Fig. 9. Individual participants’ cumulative assertions. Note the y-axes differ.

graphs are available from: https://osf.io/5thsb/

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced CENode as a novel technology
for HCC at the network edge, and presented results from a
behavioural experiment comparing the performance of groups
using CENode to achieve CSU in online and offline settings.
In our experiment, the COP increased the quality, information
agreement, of CSU but the quantity of information was greater
without the COP. Other research has conceptually noted lim-
itations of COPs [26]; our research empirically illustrates the
tradeoffs with a COP even if all users have a shared goal.

Because of the time and personnel needed to conduct this
experiment in the real-world, and analysis at the group level,
the overall sample size was limited. However, this design has
solid external validity because it was a simulation of tactical
intelligence with relevant aspects of actual tasks such as time
pressure, uncertainty, dynamic interactions. The heterogeneity
in the effect sizes for CSU with the COP may be attributable
to differences in group size and dynamics. To further assess
the effects of a COP on information quality and quantity, we
plan to run a conceptual replication of the experiment online
using a large sample from Amazon’s Mechanical Turk — see
below.

The results suggest CENode is a promising technology
for supporting rich human-machine interactions in situations
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Fig. 10. Histogram of participants’ total assertions.

where users predominantly collect local knowledge (the offline
setting) as well as situations where they are able to assemble
a global COP in real-time.

Given the initial success, we plan to develop CENode

further and use it as a basis for additional behavioural ex-
periments with scenarios that require human-machine conver-
sational interactions for solving tactical and crowd-sourced
intelligence, surveillance, and reconnaissance tasks, including
the following:

o Instead of a real-world CSU exercise where participants
directly experience elements of the situation, participants
will gather situational information via simulated ‘sensor
feeds’. This design would be well-suited to delivery via
online platforms such as Amazon’s Mechanical Turk® or
Volunteer Science* allowing access to greater number of
participants, although it would favour a single-participant
rather than group exercise, due to difficulties in coordi-
nating groups of participants via such platforms.

Enrich the CSU task with the addition of features such
as ‘hidden’ or ‘anomalous’ objects, that are not explicitly
referenced in the participants’ tasking. This design would
assess the extent to which participants are steered by
the specifics of the tasking versus the situation. In other

3https://www.mturk.com
“https://volunteerscience.com
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Fig. 11. Message volumes at 5-minute intervals.

words, are they approaching the task as being ‘open’ or
‘closed’, and does this differ between Online or Offline
Conditions?

During the initial experiments, participants were re-
quested to supply location data along with their submitted
information, based on the Global Positioning System
(GPS) coordinates of their device at the time each input
was made. The experiments were conducted indoors
so the GPS data collected was noisy and inconclusive;
nevertheless, we plan to analyse these data in detail and
consider ways to collect more accurate location data in
future experiments in real-world settings. The data may
provide insights as to how the various groups tackled the
CSU task (e.g., dispersing vs. staying together), the extent
to which they backtracked (e.g., to revisit a location
to gather missing information or collect confirmatory
information), and compare behaviours between Online
and Offline Conditions.

Assess human, with minimal training, and machine per-
formance with CENode capabilities for agile knowledge
representation and benefits of hybrid human-machine rea-
soning [27]. Agile knowledge representation would allow
users to dynamically create new entities and concepts. For
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example, the name of a person (‘Mike’), their age (‘45’),
height (‘6 feet’), hair colour (‘black’), location (‘Hursley
Village’) and social connections (‘brother of John’). This
can be further extended to hybrid human-machine reason-
ing, where humans can understand and leverage the power
of machine reasoning for large amounts of information.
For example, what people are from Hursley Village or
who is in Mike’s family?
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